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Abstract

Group lasso is a natural extension of lasso and selects variables in a grouped manner. How-
ever, group lasso suffers from estimation inefficiency and selection inconsistency. To remedy
these problems, we propose the adaptive group lasso method. We show theoretically that the
new method is able to identify the true model consistently, and the resulting estimator can be
as efficient as oracle. Numerical studies confirmed our theoretical findings.
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1 Introduction

Since its first proposal by Tibshirani (1996), the least absolute shrinkage and selection operator

(lasso) has generated much interest in statistical literature (Fu, 1998; Knight and Fu, 2000; Fan

and Li, 2001; Efron et al., 2004). The key strength of lasso lies in its ability to do simultaneous

parameter estimation and variable selection. However, recent research suggests that the traditional

lasso estimator may not be fully efficient (Fan and Li, 2001), and its model selection result could be

inconsistent (Leng et al., 2006; Yuan and Lin, 2007; Zou, 2006). The major reason accounting for

such a deficiency is that lasso applies the same amount of shrinkage for each regression coefficient.

As a simple solution, Zou (2006) modified the lasso penalty so that different amounts of shrinkage

are allowed for different regression coefficients. Such a modified lasso method was referred to as

adaptive lasso (Zou, 2006, aLasso). It has been shown theoretically that the aLasso estimator is

able to identify the true model consistently, and the resulting estimator is as efficient as oracle.

Similar methods were also developed for Cox’s proportional hazard model (Zhang and Lu, 2007),

least absolute deviation regression (Wang et al., 2007a), and linear regression with autoregressive

residuals (Wang et al., 2007b).

Both the original lasso and adaptive lasso were designed to select variables individually. How-

ever, there are situations where it is desirable to choose predictive variables in a grouped manner.

The multifactor analysis-of-variance model is a typical example. To this end, Yuan & Lin (2006)

developed the group lasso (gLasso) method, which penalizes the grouped coefficients in a similar

manner to lasso. Hence, it is expected that gLasso in Yuan & Lin (2006) suffers from the estima-

tion inefficiency and selection inconsistency in the same way as lasso. As a remedy, we propose the
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adaptive group lasso (agLasso) method. It is similar to adaptive lasso but has the capability to

select variables in a grouped manner. We show theoretically that the proposed agLasso estimator

is able to identify the true model consistently, and the resulting estimator is as efficient as oracle.

Numerical studies confirmed our theoretical findings.

The rest of the article is organized as follows. The agLasso method is proposed in the next

section, and its theoretical properties are established in Section 3. Simulation results are reported

in Section 4 and one real dataset is analyzed in Section 5. Then, the article concludes with a short

discussion in Section 6. All technical details are presented in the Appendix.

2 Adaptive Group Lasso

2.1 Model and Notations

Let (x1, y1), · · · , (xn, yn) be a total of n independent and identically distributed random vectors,

where yi ∈ R1 is the response of interest and xi ∈ Rd is the associated d-dimensional predictor.

Furthermore, it is assumed that xi can be grouped into p factors as xi = (x>i1, · · · , x>ip)
>, where

xij = (xij1, · · · , xijdj )
> ∈ Rdj is a group of dj variables. In such a situation, it is practically more

meaningful to identify important factors instead of individual variables (Yuan and Lin, 2006). In

order to model the dependence relationship between the response yi and xi, the following typical

linear regression model is assumed

yi =
p∑

j=1

x>ijβj + ei = x>i β + ei,

where βj = (βj1, · · · , βjdj )
> ∈ Rdj is the regression coefficient vector associated with the jth factor

and β is defined to be β = (β>1 , · · · , β>p )>. Without loss of generality, we assume that only the first

p0 ≤ p factors are relevant (i.e, ‖βj‖ 6= 0 for j ≤ p0 and ‖βj‖ = 0 for j > p0).

2.2 The agLasso Estimator

For simultaneous parameter estimation and factor selection, Yuan and Lin (2006) proposed the

following penalized least squares type objective function with the group lasso (gLasso) penalty

n∑

i=1

1
2

(
yi −

p∑

j=1

x>ijβj

)2
+ nλ

p∑

j=1

‖βj‖,

where ‖ · ‖ stands for the typical L2 norm. Note that if the number of variables contained in

each factor is indeed one (i.e., dj = 1), the above gLasso objective function reduces to the usual
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lasso. However, if there do exist some factors containing more than one variable, the above gLasso

estimator has the capability to select those variables in a grouped manner.

As one can be seen, gLasso penalizes each factor in a very similar manner as the usual lasso.

In other words, same tuning parameter λ is used for each factor without assessing their relative

importance. In a typical linear regression setting, it has been shown that such an excessive penalty

applied to the relevant variables can degrade the estimation efficiency (Fan and Li, 2001) and

affect the selection consistency (Leng et al., 2006; Yuan and Lin, 2007; Zou, 2006). Therefore, we

can reasonably expect that gLasso suffers the same drawback. To overcome such a limitation, we

borrow the adaptive lasso idea and propose the following adaptive group lasso (agLasso)

Q(β) =
n∑

i=1

1
2

(
yi −

p∑

j=1

x>ijβj

)2
+ n

p∑

j=1

λj‖βj‖. (2.1)

Then, minimizing the above objective function produces the agLasso estimator β̂. As can be

seen, the key difference between the agLasso and gLasso is that the agLasso allows for different

tuning parameters used for different factors. Such a flexibility in turn produces different amounts of

shrinkage for different factors. Intuitively, if a relatively larger amount of shrinkage is applied to the

zero coefficients and a relatively smaller amount is used for the nonzero coefficients, an estimator

with a better efficiency can be obtained. For practical implementation, one usually does not know

which factor is important and which one is not. However, without such prior knowledge, simple

estimators of λj can be obtained in a similar manner to Zou (2006). With those estimated tuning

parameters, we are able to show theoretically that the proposed agLasso estimator can indeed

identify the true model consistently and the resulting estimator is as efficient as oracle.

2.3 Tuning Parameter Selection

For practical implementation, one has to decide the values of the tuning parameters (i.e, λj).

Traditionally, cross-validation (CV) or generalized cross-validation (GCV) have been widely used.

However, those computationally intensive methods can hardly be useful for agLasso, simply because

there are too many tuning parameters. As a simple solution (Zou, 2006; Wang et al., 2007b; Zhang

and Lu, 2007), we consider

λj = λ‖β̃j‖−γ , (2.2)

where β̃ = (β̃>1 , · · · , β̃>p )> is the unpenalized least squares estimator and γ > 0 is some pre-

specified positive number. For example, γ = 1 is used for our simulation study and real data

analysis. Then, the originally p-dimensional tuning parameter selection problem for (λ1, · · · , λp)

reduces to a univariate problem for λ only. Thereafter, any appropriate selection method can be
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used. In our numerical studies, the following selection criteria were considered:

Cp =
‖Y −Xβ̂‖2

σ̃2
− n + 2× df

GCV =
‖Y −Xβ̂‖2

(1− n−1 × df)2
(2.3)

AIC = log
(

1
n
‖Y −Xβ̂‖2

)
+ 2df/n

BIC = log
(

1
n
‖Y −Xβ̂‖2

)
+ log n× df/n.

Note that df is the associated degrees of freedom as defined in Yuan and Lin (2006), given by

df =
p∑

j=1

I
{
‖β̂j‖ > 0

}
+

p∑

j=1

‖β̂j‖
‖β̃j‖

(dj − 1),

where σ̃2 = ‖Y −Xβ̃‖2/(n− df) is the usual variance estimator associated with β̃.

3 Theoretical Properties

The main theoretical properties of the proposed agLasso estimator are established in this section.

For the purpose of easy discussion, we define an = max{λj , j ≤ p0} and bn = min{λj , j > p0}.
Theorem 1. (Estimation Consistency) If

√
nan →p 0, then β̂ − β = Op(n−1/2).

Note that “→p” denotes convergence in probability. From Theorem 1 we know that, as long

as the maximal amount of the shrinkage applied to the relevant variables is sufficiently small,√
n-consistency is assured. Next, we establish the consistency of the agLasso estimator as a vari-

able selection method. To facilitate discussion, some notations need to be defined. Let βa =

(β>1 , · · · , β>p0
)> to be the vector containing all the relevant factors, and let βb = (β>p0+1, · · · , β>p )>

be the vector containing all the irrelevant factors. Furthermore, let β̂a and β̂b be their associated

agLasso estimators. If one knows the true model, the oracle estimator can be obtained, which is

denoted by β̃a. Standard linear model theory implies that
√

n(β̃a − βa) →d N(0,Σa) where Σa is

the d0 =
∑p0

j=1 dj dimensional covariance matrix of the fisrt p0 relevant factors.

Theorem 2. (Selection Consistency) If
√

nan →p 0 and
√

nbn →p ∞, then P (β̂b = 0) → 1.

According to Theorem 2, we know that, with probability tending to one, all the zero coefficients

must be estimated exactly as 0. On the other hand, by Theorem 1, we know that the estimates

for the nonzero coefficients must be consistent. Such a consistency implies that, with probability

tending to one, all the relevant variables must be identified with non-zero coefficients. Both Theorem

1 and Theorem 2 imply that agLasso does have the ability to identify the true model consistently.
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Theorem 3. (Oracle Property) If
√

nan → 0 and
√

nbn →∞, then
√

n(β̂a − βa) →d N(0, Σa).

Note that “→d” denotes convergence in distribution. By Theorem 3, we know that, as long as

the conditions
√

nan → 0 and
√

nbn → ∞ are satisfied, the resulting estimator is as efficient as

oracle. On the other hand, one can verify easily that, as long as n1/2λ → 0 and n(1+γ)/2λ → ∞,

the theorem conditions
√

nan → 0 and
√

nbn →∞ are satisfied.

4 Simulation Study

Simulation studies were conducted to evaluate the finite sample performance of agLasso. For

comparison purpose, the performance of both aLasso and gLasso were also evaluated. For each

simulated dataset, various selection criteria defined in (2.3) were tested. All the examples reported

in this section were obtained from Yuan and Lin (2006).

Example 1. In this example, 15 latent variables Z1, ..., Z15 were generated according to a zero

mean multivariate normal distribution, whose covariance between Zi and Zj was fixed to be 0.5|i−j|.
Subsequently, Zi was trichotomized as 0, 1, or 2 if it is smaller than Φ−1(1/3), larger than Φ−1(2/3),

or in between. Then, response Y is generated from

Y = −1.2I(Z1 = 0) + 1.8I(Z1 = 1) + 0.5I(Z3 = 0) + I(Z3 = 1) + I(Z5 = 0) + I(Z5 = 1) + ε,

where I(·) is the indicator function and the residual ε was normally distributed with mean 0

and standard deviation σ. For a relatively complete evaluation, various sample sizes (i.e., n =

50, 100, 150, 200, 250) and various noise levels (i.e., σ = 0.5, 1.0, 2.0) were tested. For each parameter

setting, 200 datasets were simulated and the median relative model error (MRME) was summarized

(Fan and Li, 2001). For each selection method, the percentage of the 200 simulated datasets, at

which the true model is correctly identified, was computed. Lastly, the average model size (i.e., the

number of factors) were compared. Due to the fact that the simulation results for GCV, Cp, and

AIC are very similar, only the results for Cp and BIC are presented in Figure 1 and 2, respectively.

We find that agLasso clearly stands out to be the best estimator for every performance measure,

almost every sample size, and every selection criterion.

Example 2. In this example, we generated 20 covariates X1, ..., X20 in the same fashion as

in Example 1. However, only the last 10 covariates X11, ..., X20 were trichotomized in the same

manner as described in the first example. The true regression model was fixed to be

Y = X3 + X2
3 + X3

3 +
2
3
X6 −X2

6 +
1
3
X3

6 + 2I(X11 = 0) + I(X11 = 1) + ε,

where ε ∼ N(0, σ2). Then, the three competing methods (i.e., aLasso, gLasso, agLasso) were

compared at different sample sizes (i.e., n = 100, 200, 300, 400) and different noise levels (i.e.,
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σ = 0.5, 1.0, 2.0). The results were summarized in Figure 3 and Figure 4. As one can see, the

results are very similar to that of Example 1.

Table 1: Model Selection Comparison for Teaching Evaluation Data

No. of Outsample MSE
Selection Factors Selected (×10−1)
Method agLasso aLasso gLasso agLasso aLasso gLasso

Cp 4.51 4.55 5.89 1.917 1.937 1.932
GCV 4.51 4.55 5.89 1.917 1.937 1.932
AIC 4.51 4.57 5.90 1.917 1.936 1.930
BIC 4.06 4.07 4.95 1.936 1.958 1.956

5 The Teaching Evaluation Data

In order to demonstrate the usefulness of agLasso in real situation, we present in this section

one real example. The data is about the teaching evaluation scores collected from a total of 340

courses taught in Peking University. For each observation, the response of interest is the teaching

evaluation score for one particular course, taught in Peking University during the period of 2002 -

2004. There is only 1 continuous predictor, which is the log-transformed class size (i.e., how many

students enrolled in the class). Due to the suspicion of some nonlinear relationship, a third-order

polynomial is used to fully characterize the class size effect. In addition to that, there are 5 different

categorical variables, which are suspected to have explanatory power for the response. They are,

respectively, the instructor’s title (assistant professor, associate professor, and full professor), the

instructor’s gender (male or female), the student type (MBA, Undergraduate, and Gradate), the

semester (Spring or Fall), and the year (2002, 2003, and 2004). For a fair evaluation, we randomly

split the 340 observations into two parts. One part contains a total of 300 observations, which are

used to build the model. The other part contains the remaining 40 observations, which are used to

evaluate the outsample forecasting error. For a reliable comparison, we repeated such a procedure

a total of 100 times with the key findings reported in Table 1. As one can see, regardless of which

selection method was used, the optimal model selected by agLasso consistently demonstrated the

smallest average model size and the best prediction accuracy.

6 Discussion

In this article, we propose the agLasso method for adaptive grouped variable selection. Both

our simulation and real data experience suggest that agLasso can outperform aLasso and gLasso
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substantially. Our preliminary results are rather encouraging and the extension to generalized

linear models should be straightforward.

Appendix

Proof of Theorem 1: Note that the agLasso objective function Q(β) is a strictly convex function.

Hence, as long as we can show that there is a local minimizer of (2.1), which is
√

n consistent, then

by the global convexity of (2.1), one knows immediately that such a local minimizer must be β̂.

Hence, the
√

n-consistency of β̂ is established. Following a similar idea in Fan and Li (2001), the

existence of a
√

n-consistent local minimizer is implied by that fact that for any ε > 0, there is a

sufficiently large constant C, such that

lim inf
n

P

{
inf

u∈Rd:‖u‖=C
Q(β + n−1/2u) > Q(β)

}
> 1− ε. (A.1)

For simplicity, define the response vector as Y = (y1, · · · , yn)> and the design matrix as X =

(x1, · · · , xn)>. It follows then that

Q(β + n−1/2u)−Q(β)

=
1
2
‖Y −X(β + n−1/2u)‖2 + n

p∑

j=1

λj‖βj + n−1/2u‖ − 1
2
‖Y −Xβ‖2 − n

p∑

j=1

λj‖βj‖

=
1
2
u>

(
1
n

X>X

)
u− u>

(
1√
n

X>(Y −Xβ)
)

+ n

p∑

j=1

λj‖βj + n−1/2u‖ − n

p∑

j=1

λj‖βj‖

=
1
2
u>

(
1
n

X>X

)
u− u>

(
1√
n

X>(Y −Xβ)
)

+ n

p∑

j=1

λj‖βj + n−1/2u‖ − n

p0∑

j=1

λj‖βj‖(A.2)

≥ 1
2
u>

(
1
n

X>X

)
u− u>

(
1√
n

X>(Y −Xβ)
)

+ n

p0∑

j=1

λj(‖βj + n−1/2u‖ − ‖βj‖)

≥ 1
2
u>

(
1
n

X>X

)
u− u>

(
1√
n

X>(Y −Xβ)
)
− p0(

√
nan)‖u‖, (A.3)

where the equality (A.2) holds because βj = 0 for any j > p0 according to the model assumption.

Furthermore, according to the theorem’s condition, we know that
√

nan = op(1), hence, the third

term in (A.3) is op(1). On the other hand, the first term converges in probability to u>cov(x)u,

which is a quadratic function in u. Last, the second term in (A.3) is linear in u with a Op(1)

coefficient. Therefore, when C is sufficiently large, the first term dominates the other two terms

with an arbitrary large probability. This implies (A.1) and completes the proof.

Proof of Theorem 2: Without loss of generality, we show in detail that P (β̂p = 0) → 1.
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Then, the same argument can be used to show that P (β̂j = 0) → 1 for any p0 < j < p, which

implies immediately that P (β̂b = 0) → 1. For a better discussion, we define X−p be a n× (d− dp)

matrix with the ith row given by (x>i1, · · · , x>i(p−1))
>, the design matrix without the pth factor.

Similarly, we define Xp to be the n × dp design matrix with the ith row given by x>ip. Next, we

define β−p = (β>1 , · · · , βp−1)> and let β̂−p be its associated estimator. Note that if β̂p 6= 0, then the

penalty function ‖β̂p‖ becomes a differentiable function with respect to its components. Therefore,

β̂p must be the solution of the following normal equation

0 =
1√
n

X>
p

(
Y −X−pβ̂−p −Xpβ̂p

)
+
√

nλp
β̂p

‖β̂p‖
=

1√
n

X>
p

(
Y −Xβ

)
+

(
1
n

X>
p X−p

)√
n
(
β−p − β̂−p

)

+
(

1
n

X>
p Xp

)√
n
(
βp − β̂p

)
+
√

nλp
β̂p

‖β̂p‖
, (A.4)

where the first term in (A.4) is of the order Op(1), and the second and the third termd are also of

the same order because β−p − β̂−p = Op(n−1/2) and βp − β̂p = Op(n−1/2) according to Theorem 1.

Next note that if β̂p 6= 0, then there must exist a k such that |β̂pk| = max{|β̂pk′ | : 1 ≤ k′ ≤ dp}.
Without loss of generality we can assume that k = 1, then we must have |β̂p1|/‖β̂p‖ ≥ 1/

√
dp > 0.

In addition to that, note that
√

nλp ≥
√

nbn →∞. Therefore, we know that
√

nλpβ̂pk/‖β̂j‖ domi-

nates the first three terms in (A.4) with probability tending to one. This simply means that (A.4)

cannot be true as long as the sample size is sufficiently large. As a result, we can conclude that with

probability tending to one, the estimate β̂p must be in a position where ‖β̂p‖ is not differentiable.

Hence, β̂p has to be exactly 0. This completes the proof.

Proof of Theorem 3: Based on the results of Theorem 1 and Theorem 2, we know that, with

probability tending to one, we must have β̂j 6= 0 for j ≤ p0 and β̂j = 0 for j > p0. Then, we know

that, with probability tending to one, β̂a must be the solution of the following normal equation

1
n

X>
a (Y −Xaβ̂a) + D(β̂a) = 0,

where D(β̂a) = (λ1β̂
>
1 /‖β̂1‖, · · · , λp0 β̂

>
p0

/‖β̂p0‖)>. It follows then

√
n(β̂a − βa) =

(
1
n

X>
a Xa

)−1 (
1√
n

X>
a (Y −Xaβa) +

√
nD(β̂a)

)
. (A.5)

Due to the fact that
√

nλj ≤
√

nan →p 0 for any j ≤ p0 and |β̂jk|/‖β̂j‖ < 1 for any 1 ≤ k ≤ dj , we

know that D(β̂a) = op(n−1/2). Therefore, (A.5) can be further written as

√
n(β̂a − βa) =

(
1
n

X>
a Xa

)−1 (
1√
n

X>
a (Y −Xaβa)

)
+ op(1) →d N(0, Σa).
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The theorem’s conclusion follows and this completes the proof.
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Figure 1: Model 1 with Cp as the Selection Criterion
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Figure 2: Model 1 with BIC as the Selection Criterion
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Figure 3: Model 2 with Cp as the Selection Criterion
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Figure 4: Model 2 with BIC as the Selection Criterion
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