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Abstract

By slicing the region of the response (Li, 1991, SIR) and applying local ker-

nel regression (Xia et al., 2002, MAVE) to each slice, a new dimension reduction

method is proposed. Compared with the traditional inverse regression methods,

e.g. sliced inverse regression (Li, 1991), the new method is free of the linearity

condition (Li, 1991) and enjoys much improved estimation accuracy. Compared

with the direct estimation methods (e.g., MAVE), the new method is much more

robust against extreme values and can capture the entire central subspace (Cook,

1998b, CS) exhaustively. To determine the CS dimension, a consistent cross-

validation (CV) criterion is developed. Extensive numerical studies including

one real example confirm our theoretical findings.
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1. INTRODUCTION

Li (1991) developed a seminal sufficient dimension reduction method called sliced

inverse regression (SIR). Ever since then, various methods from the inverse regression

perspective have been proposed, including sliced average variance estimation (Cook

and Weisberg, 1991, SAVE), principal Hessian directions (Li, 1992; Cook, 1998a, PHD),

simple contour regression (Li et al., 2005, SCR), inverse regression (Cook and Ni, 2005,

IR), the Fourier estimation (Zhu and Zeng, 2006, Fourier), and many others. All those

methods were developed under the linearity condition of Li (1991), which assumes that

E(b>1 X|b>2 X) is linear in b>2 X, where X stands for the predictor vector and bi (i = 1, 2)

are two arbitrary vectors. Some of those methods may also need the so-called constant

variance assumption (Cook and Weisberg, 1991; Li, 1992; Cook, 1998a; Li et al., 2005).

For a good review, we refer to Cook and Ni (2005).

All those inverse regression methods are computationally simple and practically

useful. But many of them fail in one way or another to estimate the central subspace

(Cook, 1998b, CS) exhaustively. For example, it is well known that PHD (Li, 1992;

Cook, 1998a) can only detect nonlinear patterns and it only estimates the directions

in the central mean subspace (Cook and Li, 2002; Yin and Cook, 2002, CMS). On the

other hand, slicing regression (Duan and Li, 1991), SIR (Li, 1991), and IR (Cook and

Ni, 2005) may fail if the regression relationship is highly symmetric (Li, 1992; Cook,

1998b). Furthermore, our experience shows that the finite sample performance of those

methods could be poor if the linearity condition of Li (1991) is violated and/or the CS

dimension is larger than two. Hence, practical applications call for new methods which

have better efficiency and are free of the linearity condition.

As the first attempt, Xia et al. (2002) proposed the minimum average variance

estimation (MAVE) method. Unlike the inverse regression methods (e.g., SIR, SAVE,

etc), MAVE directly estimates the CMS directions via kernel smoothing techniques.

Hence, MAVE is free of the linearity condition. Furthermore, with the refined low-
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dimensional kernel weights, MAVE outperforms many other direct estimation methods,

where high-dimensional kernel weights are used (Härdle and Stoker, 1989; Samarov,

1993). Consequently, MAVE is useful for both dimension reduction (Xia et al., 2002)

and semiparametric modeling (Xia, 2006). However, just like every other statistical

method, MAVE has its own limitation. In particular, MAVE is sensitive to extreme

values and can infer only about the CMS, which could be very different from the CS

(Cook and Li, 2002; Yin and Cook, 2002).

To overcome such a limitation, we propose here a sliced regression (SR) method

for dimension reduction. We first slice the response region as Li (1991) did, and then

apply the MAVE method (Xia et al., 2002) to each slice. Lastly, by appropriately

combining the resulting MAVE estimates from each slice, the new dimension reduction

method (Sliced Regression, SR) is created. Compared with the traditional inverse

regression methods (e.g., SIR), SR is free of the linearity condition (Li, 1991) and enjoys

a much improved estimation accuracy. Compared with the direct estimation methods

(e.g., MAVE), SR is much less sensitive to extreme values and can capture the entire

CS exhaustively. To determine the CS dimension, a consistent cross-validation (CV)

criterion is developed. Extensive numerical studies including one real example confirm

our theoretical findings.

The rest of the article is organized as the follows. Section 2 introduces the SR

method, including the motivation, the algorithm, and a CV criterion for the CS di-

mension determination. The asymptotic properties are also investigated in this section.

Finite sample performance of SR is evaluated and compared with some existing meth-

ods in Section 3 via both simulated and real datasets. A brief discussion about the

other aspects of the proposed methods is provided in Section 4.

2. THE SLICED REGRESSION METHOD

2.1. Model and Notations
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Let Y ∈ R1 be the response of interest and X = (X1, · · · , Xp)
> ∈ Rp be the p-

dimensional predictor. To simplify the regression relationship, the following model is

assumed (Li, 1991; Cook, 1998b)

Y X|B>X, (2.1)

where “ ” denotes “conditional independence” and B ∈ Rp×d is the coefficient matrix.

Model (2.1) implies that B>X summarizes all the useful information of X about

Y . Let S(Ã) be the linear subspace spanned by the column vectors of an arbitrary

matrix Ã. If (2.1) holds, we then refer to S(B) as the sufficient dimension reduction

(SDR) subspace (Cook, 1998b). If the intersection of all SDR subspaces is still a SDR

subspace, it is called the central subspace (CS), denoted by Sy|x (Cook, 1998b). We

assume further that Sy|x exists with a basis being B0 ∈ Rp×d0 for some 0 < d0 < p.

As noted by Cook and Li (2002), researchers very often concern only about the

conditional mean E(Y |X). In that situation, the objective of dimension reduction

becomes how to find some basis matrix A such that

Y E(Y |X)|A>X.

We refer to S(A) as the mean dimension reduction (MDR) subspace (Cook and Li,

2002). Similarly, if the intersection of all MDR subspaces is still a MDR subspace, it

is referred to as the central mean subspace (Cook and Li, 2002, CMS). As one can see,

the CMS is just a subspace of the CS and could be different from the CS.

2.2. The Motivation

Let x = (x1, ..., xp)
> be a non-random vector in Rp and y be a non-random scalar

in R1. Our SR method is motivated by the following propositions.
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Proposition 1. For any matrix B, Y X|B>X is equivalent to P (Y ≤ y|X = x) =

P (Y ≤ y|B>X = B>x) for all y ∈ R1 and x ∈ Rp.

A proof of this proposition can be found in Zeng and Zhu (2007). Since P (Y ≤
y|X) = E{I(Y ≤ y)|X}, Proposition 1 implies that the CS of Y is related closely

to the CMS of I(Y ≤ y). Consequently, as long as the CMS of I(Y ≤ y) can be

estimated for all y ∈ R1, one can recover Sy|x easily. Let M(y|x) = E{I(Y ≤ y)|X =

x} and G(y|u) = E(I(Y < y)|B>
0 X = u). Because B0 is a basis of the CS, by

Proposition 1 we have M(y|x) = G(y|B>
0 x). Consider the gradients 5M(y|x) =

(∂M(y|x)/∂x1, ..., ∂M(y|x)/∂xp)
> and 5G(y|u) = (∂G(y|u)/∂u1, ..., ∂G(y|u)/∂ud0)

>

with u = (u1, · · · , ud0)
>. We then have

Proposition 2. Let Ω(y) = E{5M(y|X)5>M(y|X)} and Λ(y) = E{5G(y|B>
0 X)

5>G(y|B>
0 X)}. If B0 is a basis of the CS and that 5M(y|x) is continuous in x, then

(i) EΩ(Y ) = B0E{Λ(Y )}B>
0 , and (ii) E{Λ(Y )} is of full rank.

A proof of Proposition 2 is given in the Appendix A at the end of this article. Note

that 5M(y|x) can be estimated easily by nonparametric methods. Thus, B0 can be

estimated by the eigenvectors of Ω(y). Moreover, since matrix E{Λ(Y )} is of full rank,

the CS of Y can be estimated exhaustively via the eigenvectors of E{Ω(Y )}. For an

easy implementation, we follow the idea of SIR (Li, 1991) and focus on a finite number

of pre-specified slices, whose grid points are given by T = {−∞ = s0 < s1 < · · · <

sH = +∞}. Define the slice indicator as zk = I(s(k−1) < Y ≤ sk). Theoretically, if the

grid points in T are sufficiently dense, the CMS of (z1, · · · , zH)> ∈ RH is expected to

coincide with the CS of Y (i.e., Sy|x). To find the CMS for each slice, consider

zk = Gk(B
>
0 X) + εk, , k = 1, ..., H, (2.2)

where Gk(u) = E(zk|B>
0 X = u) and εk = zk − Gk(B

>
0 X) with E(εk|X) = 0. By

Proposition 2, Sy|x can be estimated consistently and exhaustively through the CMS
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of (2.2), which can be estimated efficiently by many existing methods such as MAVE

(Xia et al, 2002) and the methods in Yin and Cook (2002).

Remark 2.1. Note that Gk(B
>
0 x) is related to the conditional distribution function

while Xia (2007) considered the conditional density function. As a comparison, SR

is computationally easier and theoretically more general (e.g., SR is still applicable

with discrete responses). Furthermore, as we shall demonstrate later, SR enjoys a

cross-validation (CV) method, which is able to estimate d0 consistently.

Remark 2.2. For some inverse regression methods (e.g., SIR and IR), each slice can

provide only one directional estimate. Consequently, requiring H ( i.e., the number

of slices) to be greater than d0 (i.e., the CS dimension) becomes necessary, if one

wishes to recover the CS exhaustively. Nevertheless, such a requirement could be

problematic if the response is discrete. For example, if the number of all possible

values for the response is even smaller than d0, those inverse regression methods can

no longer estimate the CS exhaustively, while SR is free of such a problem.

Remark 2.3. Similar to SIR, the SR approach here considers only the order (or the

rank) of the responses rather than their exactly values. By doing so, the effect of

extreme values or outliers is abated (Cavanagh and Sherman, 1998). Such a property

is another advantage over the traditional MAVE method in terms of the robustness;

see Example 1 in Section 3.

2.3. An Initial Estimate

Let {(X i, Yi), i = 1, ..., n} with X i = (Xi1, · · · , Xip)
> be n random samples from

(X, Y ). Variables zik and εik used in (2.2) can be defined accordingly. Let K0(·) be a

univariate symmetric density function. For any q-dimensional vector v = (v1, · · · , vq)
>,

define K(v) = K(v1, · · · , vq) = K0(v
2
1 + · · · + v2

q ) and Kh(v) = h−qK(v/h) with a

bandwidth h > 0. Then, by the method of local linear smoothing, we can estimate
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the value of (Gk(x
>B0), ∂Gk(x

>B0)/∂x) at Xj by (âjk, b̂jk), which is obtained by

minimizing the following local least squares function (Fan and Gijbels, 1996)

n−1

n∑
i=1

{
zik − ajk − b>jkXij

}2

Kh0(Xij) (2.3)

with respect to ajk ∈ R1 and bjk ∈ Rp, where Xij = X i − Xj and h0 > 0 is a

bandwidth. The selection of h0 will be discussed in Remark 2.4. The solution to (2.3)

is given by




âjk

b̂jk


 =

{ n∑
i=1

Kh0(Xij)




1

Xij







1

Xij




>
}−1{ n∑

i=1

Kh0(Xij)




1

Xij


 zik

}
.

Following the idea of the outer-product of gradient method (Samarov, 1993; Xia et al.,

2002), we then construct the following matrix

Σ̂ = n−1

H∑

k=1

n∑
j=1

ρ̂j b̂jkb̂
>
jk,

where ρ̂j is a trimming function introduced here for technical purpose (Xia et al., 2002;

Fan et al., 2003); see Remark 2.5 for details. Note that Σ̂ is nothing but an estimator

of E{Ω(Y )} in Proposition 2. The basis of Sy|x can then be estimated by the first d0

eigenvectors of Σ̂. Such a simple estimate is referred to as outer product of gradient

(Xia et al., 2002; Xia, 2006, OPG) estimator, and can be used as one possible initial

estimate, denoted by B(0).

Remark 2.4. Note that model (2.2) is just a working model for the conditional prob-

ability function. Thus, the simple rule of thumb (or the so-called normal-reference

method) can be used to select the bandwidth h0 (Silverman, 1986; Scott, 1992; Fan

and Gijbels, 1996; Li and Racine, 2006). Simply speaking, after standardizing the

covariate (see Remark 2.6), we set h0 = n−1/(p+4) throughout the rest of the article.
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Remark 2.5. Intuitively, those points with too few observations around cannot pro-

duce reliable estimates (e.g., âjk and b̂jk). Thus, those estimates should be trimmed

off. For such a purpose, we define in this article ρ̂j = ρ(f̂(Xj)), where f̂ is some

estimate of the predictor density and ρ(·) is a function, such that ρ(ω) > 0 if ω > ω0,

and ρ(ω) = 0 if ω ≤ ω0 for some small ω0 > 0. For a more detailed discussion, one can

refer to Xia et al. (2002) and Fan et al. (2003).

2.4. The Refined Estimate

The working model (2.2) implies that the gradient vector ∂Gk(x
>B0)/∂x is con-

tained in Sy|x = S(B0) for any x ∈ Rp and every 1 ≤ k ≤ H. Such a relationship

suggests that the estimate B(0) can be further refined. Hence, we follow the idea of

MAVE (Xia et al., 2002) and propose the following refining procedure. Given a current

estimate B(t), the next (i.e., refined) estimate B(t+1) can be obtained by minimizing

the following global least squares function

n−2

H∑

k=1

n∑
j=1

ρ̂j

n∑
i=1

{
zik − ajk − d>jkB

>Xij

}2

Kh(t)
(X>ijB(t)) (2.4)

with respect to ajk ∈ R1, djk ∈ Rd0 , and B ∈ Rp×d0 with B>B = Id0 , where Id0 stands

for a d0-dimensional identity matrix. Denote the minimizer of B to (2.4) by B(t+1),

which is our refined estimator. Once the estimate B(t+1) converges as t increases, the

final SR estimate is obtained, which is denoted by B̂.

Note that the minimization problem (2.4) can be solved iteratively with respect

to {(ajk, djk), j, k = 1, ..., n} and B separately. As a consequence, we need to solve

two quadratic programming problems, each of which has an explicit solution. Define

operators `(.) and M(.) respectively as `(B) = (β>1 , · · · ,β>d)> and M(`(B)) = B,

where βj ∈ Rp represents the jth (1 ≤ j ≤ d) column vector of B. For any matrix A,

we use |A| to denote the maximum singular value of an arbitrary matrix A, which is
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the Euclidean norm if A is a vector. Then, starting with t = 1 and B(1) = B(0), the

proposed SR algorithm can be carried out as follows.

Step 1: Let B = B(t) and calculate the solutions of (ajk,djk) to the minimization

problem (2.4), which gives

(
a

(t)
jk

d
(t)
jk

)
=

{
n∑

i=1

Kh(t)
(B>

(t)Xij)

(
1

B>
(t)Xij

)(
1

B>
(t)Xij

)>}−1

×
{

n∑
i=1

Kh(t)
(B>

(t)Xij)

(
1

B>
(t)Xij

)
zik

}
,

where h(t) = max{ςh(t−1), ~}, ς is some constant satisfying 1/2 < ς < 1, and

~ ∝ n1/(d0+4) is the final bandwidth, which can be selected by the rule-of-thumb.

Step 2: Let ρ
(t)
j = ρ(f̂B(t)

(Xj)) with f̂B(t)
(Xj) = n−1

∑n
i=1 Kh(t)

(B>
(t)Xij). Fixing

ajk = a
(t)
jk and djk = d

(t)
jk , calculate the solution of B or `(B) to (2.4), which

produces

Γ(t+1) =
{ n∑

k,j,i

ρ
(t)
j Kh(t)

(B>
(t)Xij)X(t)

ijk(X
(t)
ijk)

>
}−1

×
n∑

k,j,i

ρ
(t)
j Kh(t)

(B>
(t)Xij)X(t)

ijk{zik − a
(t)
jk },

where X(t)
ijk = d

(t)
jk ⊗ Xij and “⊗” stands for the Kronecker product.

Step 3: Calculate Λ(t+1) = {M(Γ(t+1))}>M(Γ(t+1)) and B(t+1) = M(Γ(t+1))Λ
−1/2
(t+1).

Step 4: Check the convergency. If the following discrepancy measure (Li et al., 2005)

|B(t+1){B>
(t+1)B(t+1)}−1B>

(t+1)−B(t){B>
(t)B(t)}−1B>

(t)| is smaller than some pre-

specified tolerance value (e.g. 10−6), we stop the iteration and output the final

SR estimate B̂ := B(t+1). Otherwise set t := t + 1 and go back to Step 1.

Remark 2.6. In real application, we typically standardize X i by setting X i :=
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S−1/2
x (X i − X̄), where X̄ = n−1

∑n
i=1 X i and Sx = n−1

∑n
i=1(X i − X̄)(X i − X̄)>.

Then the CS directions should be estimated by S−1/2
x B̂.

Remark 2.7. In fact, we can also provide a refined OPG estimator by replacing the

high dimensional kernel weight in (2.3) with the refined low dimensional one. We refer

to such an estimator as the refined OPG estimator (Xia et al., 2002; Xia, 2006, rOPG).

Our extensive numerical experience suggests that the performance of rOPG can be

comparable but not as good as SR, which corroborates the theoretical findings of Xia

(2006, pp. 1119, Corollary 4.3).

2.5. Estimating the CS Dimension

In practice, one may have little prior knowledge about the true CS dimension d0.

The following cross-validation (CV) criterion can be used in selecting d0. With a

working dimension d and its corresponding SR estimate B̂d, we can calculate the

“leave-one-out” fitted value for each observation j (1 ≤ j ≤ n) as

ajk,d =

∑
i6=j K~d

(B̂
>
d Xij)zik

∑
i6=j K~d

(B̂
>
d Xij)

, k = 1, ..., H,

where ~d > 0 is the final bandwidth (i.e., ~) used for B̂d. Following the idea of Xia

et al. (2002), we define the corresponding CV value as

CV (d) = n−1

H∑

k=1

n∑
j=1

w(Xj)(zjk − ajk,d)
2, (2.5)

where w(x) is another trimming function. To include the trivial case that X is in-

dependent of Y (i.e. d0 = 0), we define CV (0) = n−1
∑H

k=1

∑n
j=1 w(X i)(zjk − z̄k,−j)

2

with z̄k,−j = (n− 1)−1
∑

i6=j zik. Then, d0 can be estimated by

d̂ = arg min
0≤d≤dmax

CV (d),
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where dmax is a pre-specified maximum CS dimension (e.g., dmax = p).

2.6. Theoretical Results

Assume that both B0 and B̂ have been standardized such that B>
0 B0 = Id0 and

B̂
>
B̂ = Id. The detailed technical conditions and proof of the following theorems are

given in Appendix B, which can be obtained from the authors by request or downloaded

from an JASA supplemental material website at:

http : //www.amstat.org/publications/jasa/supplemental−materials.

Theorem 1. Suppose conditions (C1)-(C5) in the Appendix B hold, d = d0, and the

final bandwidth is ~, then the SR estimator B̂ is consistent with

|B̂B̂
> −B0B

>
0 | = Op{~4 + log n/(n~d0) + n−1/2}.

Theorem 1 indicates that the consistency rate of the SR estimator is faster than that

of the optimal nonparametric estimator. In particular, if d0 ≤ 3, the
√

n-consistency

can be achieved by taking ~ ∝ n−1/(d0+4), which is of the same order as the optimal

bandwidth in nonparametric smoothing (Fan and Gijbels, 1996). Consequently, no

undersmoothing is needed for SR.

Remark 2.8. To achieve the
√

n-consistency with d0 > 3, we can apply one dimen-

sional MAVE to zik, which produces one directional estimate θ̂k ∈ Rp for every slice

1 ≤ k ≤ H. Then, B0 can be estimated by the first d0 eigenvectors of
∑H

k=1 θ̂kθ̂
>
k .

One can show that such an estimate is
√

n-consistent as long as X i is normally dis-

tributed. As we discussed in Remark 2.2, this approach may not be able to recover

the CS exhaustively. Furthermore, its finite sample performance is not attractive since

only one direction is retrieved from each slice.
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Theorem 2. Suppose conditions (C1)-(C5) in the Appendix B hold. Moreover, the

bandwidth ~d used for different dimension d satisfies ~d ∝ n−1/(d+4). Then, we have

P (d̂ = d0) → 1 as n →∞.

Theorem 2 confirms theoretically that the proposed CV method is indeed consistent

in selecting the CS dimension.

2.7. Some Practical Issues

Per the Associate Editor’s kind advice, we would like to discuss here a number of

practical issues related to SR’s implementation. Firstly, note that SR involves two

bandwidths. They are, respectively, h0 (the bandwidth required by the initial OPG

estimator) and ~d (the bandwidth required by the refined estimator). Simultaneously

tuning two different bandwidths by the classical method such as CV is computation-

ally expensive. In our calculation, after standardizing X we use the so-called normal-

reference method (Silverman, 1986; Scott, 1992; Fan and Gijbels, 1996; Li and Racine,

2006) and set h0 = n−1/(p+4) and ~ = n−1/(d+4). It is known that these bandwidths

are asymptotically optimal for the estimation of the probability density function when

the covariates are jointly standard normal. Although real situation might be different,

many researchers still find such a normal-reference method very useful as a quick solu-

tion (Silverman, 1986; Scott, 1992; Fan and Gijbels, 1996; Li and Racine, 2006). Our

experience with SR further confirms such an observation (see Section 3 for simulation

demonstration). Simply speaking, we find that, with such a simple bandwidth selec-

tor, SR’s performance has already been very competitive. Consequently, if one can

estimate SR’s optimal bandwidth effectively, SR’s finite sample performance might be

even better. Nevertheless, how to estimate such an optimal bandwidth effectively is

indeed an important yet challenging question for future study.

Another important tuning parameter involved in SR is the number of slices H. One
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might expect that a relatively larger H can bring more information from the response

into regression. Thus, we can reasonably expect that a relatively larger H can lead to

more accurate SR estimates. Nevertheless, a too large H inevitably incurs too many

local parameters to be estimated, e.g., ajk and djk in (2.4). Thus, one can also expect

that a too large H is not necessarily a good choice. How to select the optimal H is

indeed a challenging question for not only SR but also many inverse regression methods

(e.g., SIR and SAVE), and is open for discussion. However, our numerical experience

suggests that, within a sensible range (e.g., H ∈ [5, 10]) and with a reasonable sample

size, SR is rather robust to H as compared with those inverse regression methods (e.g.,

SIR and SAVE); see Section 3 for detailed simulation comparison and discussions.

The last important issue is the initial estimate. Because SR only involves low di-

mensional kernel smoothing, SR does not suffer from the curse of dimensionality too

much, as long as the initial value can be specified at a reasonable precision. Neverthe-

less, the OPG estimate developed in Section 2.3 clearly suffers from such a weakness.

As noted by the Associate Editor, with a high predictor dimension, the bandwidth

required by OPG (i.e., h0) becomes rather large. This makes the local least squares

estimate (2.3) very similar to the ordinary least squares (OLS) estimate, which uses

slice indicator zk as the response and X as the predictor. As kindly raised by the

Associate Editor, an interesting question is: what would happen if we just use such

a simple OLS estimate as the initial estimate? Example 6 in Section 3 suggests that

most likely both the OPG estimate and the simple OLS estimate lead to almost iden-

tical final SR estimate. This phenomenon is because the simple OLS estimate very

often is also consistent for the CS, as long as the linearity condition is satisfied and

the regression relationship is not highly symmetric (Duan and Li, 1991; Li, 1991). If

the regression relationship is highly symmetric (e.g., Example 2 in Section 3), the OLS

estimate cannot capture any direction in the CS (Duan and Li, 1991), thus cannot

serve as a good initial estimate. In this situation, other inverse regression methods
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(e.g., SAVE and PHD) are found useful. Moreover, Hall and Li (1993) showed that

the linearity condition is still approximately satisfied when the dimension of the X is

sufficiently large. Thus, such a simple OLS estimate as suggested by the Associate

Editor and many other estimates (e.g., SIR, SAVE) might all be good choices for the

initial estimate; see Example 6 in Section 3.

3. NUMERICAL EXPERIMENTS

3.1. Simulation Studies

Simulation studies are conducted to evaluate SR’s finite sample performance. For

comparison purpose, some existing methods (i.e., SIR, PHD, SAVE, Fourier, SCR, and

MAVE) are also evaluated. For every method other than PHD, some tuning parameters

are inevitably involved. For example, the number of slices (SIR, SAVE, and SR), the

percentage of empirical distribution (SCR), the (σ2
T , σ2

W ) value (Fourier), and also

the bandwidths (MAVE and SR). To evaluate the sensitivity of those methods with

respect to the tuning parameter specification, the following simulation configurations

are considered: (1) The number of slices for SIR, SAVE, and SR is fixed to be 5 or

10; (2) The percentage of empirical directions used by SCR is given by 5% or 10%

(Li et al., 2005); (3) For the Fourier method, we fix σ2
T = 1.0 but σ2

W = 5% or 10%

(Zhu and Zeng, 2006); (4) Lastly, the Gaussian kernel is used for MAVE and SR.

After standardizing the covariates, the final bandwidth is given by ~d = κ~∗d, where

~∗d = 0.1n−1/(d+4). Then, κ is fixed to be 5 or 10 for SR and MAVE. All the trimming

functions are set to be constants. For an arbitrary estimate B̄, the estimation accuracy

is evaluated by ∆(B̄,B0) = |B̄(B̄
>
B̄)−1B̄

>−B0(B
>
0 B0)

−1B>
0 | (Li et al., 2005). For

each parameter setting, a total of 100 simulation replications are conducted.

Example 1. As our first simulation example, we consider the following non-linear
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regression model with additive noise

Yi = (X>
i B0)

−1 + 0.2× εi,

where εi is a standard normal random variable, X i ∈ R10 is a 10-dimensional pre-

dictor, and B0 = (1, 1, 1, 1, , 0, · · · , 0)> ∈ R10 is the regression coefficient. We know

immediately that d0 = 1. Predictors X i is generated according to X i = Σ1/2
x ei, where

Σx is a positive definite matrix with its (j1, j2)th entry being 0.5|j1−j2|. Moreover, ei

is generated as ei = (ei1, · · · , eip)
> with eij’s independently generated from either a

standard normal distribution (N) or a uniform distribution (U) on [−√3, +
√

3]. Per

the Associate Editor’s advice, we also considered a mixture normal distribution (M)

generated according to N(µj,Σx), j = 1, ..., p with probability 1/p each, where µj ∈ Rp

is a p-dimensional predictor with the jth component being 2 and others 0. Various

sample sizes (e.g., 100, 200, and 400) are examined. Due to space limitation, we

only report here the results with n = 400. Because the conditional mean function

E(Yi|X i) = (X>
i B0)

−1 tends to produce extreme values around the origin, we expect

that MAVE cannot perform well. The simulation results summarized in the top panel

of Table 1 indeed confirm such an expectation. In this example, SR stands out as

the best method followed by SIR, whose performance, nevertheless, is much worse.

Furthermore, SR is much less sensitive towards tuning parameters.

Example 2. It is well known that some dimension reduction methods (e.g., SIR)

may fail if the regression relationship is highly symmetric (Cook and Weisberg, 1991).

Hence, it is of interest to evaluate SR’s performance under such a situation. We borrow

the following example from Li (1992),

Yi = cos(2Xi1)− cos(Xi2) + 0.2× εi,

where X i and εi are generated in the same manner as in Example 1 with n = 400. For
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this example, we have d0 = 2 and B0 = {(1, 0, 0, · · · , 0)>, (0, 1, 0, · · · , 0)>} ∈ R10×2.

The simulation results are summarized in the middle panel of Table 1. We find that

SIR completely fails. The performance of PHD and SAVE is reasonable, but much

worse than that of MAVE and SR. We find that SR is rather robust towards tuning

parameter specification, as compared with other methods (e.g., SIR and SAVE). Lastly,

since Sy|x is completely contained in the conditional mean E(Y |X), SR’s somewhat

inferior performance to that of MAVE is not surprising. Although slicing can help

us in discovering the complicated CS structure, it may also leads to information loss

(Cook and Ni, 2006). Theoretically, we can follow the idea of Cook and Ni (2006)

and partially recover those information by replacing the zk in (2.2) by zkY . Unless

extreme values are involved (e.g., Example 1), SR’s estimation accuracy is expected to

be further improved.

Example 3. In the previous two examples, the information of Sy|x is completely con-

tained in the conditional mean E(Y |X). To take into consideration of the conditional

variance var(Y |X), the following model is constructed

Yi =
Xi1

0.5 + (Xi2 + 1.5)2
+ X2

i3 × εi,

where X i and εi are generated in the same manner as Example 1. For this example,

we have d0 = 3, B0 = {(1, 0, 0, · · · , 0)>, (0, 1, 0, · · · , 0)>, (0, 0, 1, · · · , 0)>} ∈ R10×3.

With n = 400, the results are summarized in the bottom panel of Table 1. For this

example, SR stands out as the only method works well with finite sample size. The

only competitor Fourier’s estimation error is still no less than 0.55. Once again, we

find our SR method is rather robust to tuning parameter specification with a relatively

large sample size, e.g., n = 400.

Example 4. In this example, we would like to evaluate the finite sample performance

of our CV method for the CS dimension determination. Data are simulated in the same

16



manner as the previous three examples. To reduce the computational burden, we fix

the maximal dimension dmax = 5 with H = κ = 5. The results are summarized in

Table 2. We find that the percentage of experiments with d̂ = d0 (i.e., the numbers

reported in boldface) quickly approaches 1.00 as the sample size increases. Such a

pattern numerically confirms that our CV method is indeed consistent.

Example 5. In this example, we would like to evaluate the finite sample performance

of our SR method in the high dimensional situation. Specifically, the data are simulated

according to the following four models

Model I: Yi = (X>
i B0)

−1 + 0.2× εi,

Model II: Yi = 0.1(X>
i B0 + εi)

3,

Model III: Yi = exp(X>
i B0)× εi,

Model IV: Yi = sign(2Xi2 + εi1)× log |2Xi2 + 4 + εi2|,

where Model I is the same as our Example 1, and Models II – IV are borrowed from

Duan and Li (1991), Ni et al. (2005) and Chen and Li (1998), respectively. More

specifically, εi, εi1, and εi2 are independent standard normal noise. The predictor X i is

generated according to the normal distribution as specified by Example 1. The sample

size is fixed to be n = 400, but the number of predictors are given by p = 10, 20, or 50

respectively. For both Models I and II, we have B0 = (1, 1, 1, 1, 0, 0, · · · , 0)> ∈ Rp. For

Model 3, we fix B0 = (1, 0.5, 1, 0, 0, · · · , 0)> ∈ Rp. As one can see, d0 = 1 for Models I –

III, but d0 = 2 for Model IV with B0 = {(1, 0, 0, · · · , 0)>, (0, 1, 0, · · · , 0)>} ∈ Rp×2. As

one can see from Table 3, SR demonstrates a very satisfactory finite sample performance

even with p = 50. For Models II – IV, the performance of SIR is also very competitive,

but slightly worse than that of SR.

Example 6. To evaluate SR’s sensitivity towards different specifications of the initial

estimates, we replicate Example 5 but with the following four different initial estimates:
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the ordinary least squares estimate with zk as the response (OLS, as suggested by the

Associate Editor), the SIR estimate, the SAVE estimate, and also the OPG estimate.

For this example, we fix p = 10, n = 400, κ = 5, and H = 5 with mixture predictor

distribution (M) given in Example 1. The average estimation errors are reported in

Table 4. As one can see, regardless of which initial estimate to use (e.g., OLS, SIR,

SAVE, or OPG), the final results are almost identical.

Example 7. To further quantify the effect of the H on SR’s estimation accuracy, we

replicate Example 2 with n = 200, p = 10, κ = 10, and normally distributed predictors.

We then compute the SR estimate with various H values (H = 2, 4, · · · , 20), and then

evaluate its estimation error in the same manner as Example 2. The calculation results

are reported in Figure 1. As one can see, a reasonably larger H value (e.g., H = 2

vs. H = 6) can leads to better SR estimates with smaller average estimation error.

However, an unduly large H can also affect the estimation accuracy adversely (e.g.,

H = 6 vs. H = 20). Such a pattern well matches our expectation as discussed in the

second paragraph of Section 2.7.

Example 8. One might wonder why the finite sample performance of the SR esti-

mate improves much faster than other methods (e.g., SIR) as n increases. Firstly, we

want to kindly remark that the MAVE technique utilized by SR very often generates

highly efficient estimate. For example, in a single-index model setup, it has been very

well understood (Xia, 2006) that the resulting estimate is the mostly efficient in a semi-

parametric sense (Bickel et al., 1993). If the MAVE technique can leads to the mostly

efficient estimates for the single-index model, it is not surprising then to find it also

performs very well under a multiple-index setup and the general dimension reduction.

This might partially explain why SR performs so well. Secondly, the outstanding per-

formance of SR might also partially due to its
√

n-consistency. We reconsider Example

1 with p = 10, κ = 5, H = 5, and normally distributed predictors. The sample size n

is taken as n = 100, 200, · · · , 500. The average estimation error of the SR estimate is
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computed and reported in Figure 2. If the SR estimate is indeed
√

n consistent as we

stated in Theorem 1, we should expect an approximately linear relationship between

the averaged estimation error ∆(B̄, B0) and 1/
√

n. As one can see, Figure 2 clearly

confirms such an expectation. Consequently, we know that the speed at which the SR’s

estimation error improves is not surprising. The same experiments are also conducted

for both Example 2 and Example 3 with similar findings.

3.2. The ROE Data

We study here a real example from one of the world’s fastest growing capital mar-

kets – the Chinese stock market. The dataset is derived from the CCER database,

which is considered as one of the most authoritative commercial databases for Chinese

stock market (http://www.ccerdata.com/). The final dataset contains a total of 1042

observations collected in the years of 2002 and 2003. Each observation corresponds

to one firm whose stock is publicly listed on the Chinese stock market during that

period. For each firm, the following 6 accounting variables are collected in the year of

2002: return on equity (ROE), asset turnover ratio (ATO), profitability margin (PM),

leverage level (LEV), sales growth rate (GROWTH), and log-transformed total asset

(ASSET). These variables serve as our predictors. All predictors are standardized sep-

arately so that each of them has unit sample variance. The response of interest is the

firm’s next year earnings (ROEt, i.e., ROE in 2003). The ultimate goal of this study is

to understand those firms’ earnings patterns, which can be very useful for investment

decision.

Because China has experienced a very fast economic growth during the past decade,

the firms operating in such an environment also experienced a lot of turbulence and

uncertainties. This makes their earnings pattern extremely abnormal and unlikely to

be linear. For example, the kurtosis estimated based on the residuals differentiated

from an ordinary least squares fit (Cook and Li, 2002) is as large as 44.1. Such a

heavy-tailed distribution seriously challenges the reliability of those methods that are
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based on least squares estimation, e.g., MAVE. Furthermore, simple histograms reveal

that many predictors considered here are highly schewed (e.g., the estimated skewness

of ROE is as large as -4.5). Thus, the joint distribution of the predictors cannot be

elliptically symmetric. Such an observation rules out the possibility that the linearity

condition of Li (1991) can be well satisfied here; see also Eaton (1986) and Cook and

Nachtsheim (1994). Hence, the applicability of those inverse regression methods is also

very questionable here.

As one can see, such a complicated dataset naturally calls for a sufficient dimension

reduction method, which must be free of the linearity condition yet insensitive to

possible outliers. As a result, the proposed SR method is a good choice to analyze this

dataset. We first apply our CV criterion (2.5) to determine the structure dimension,

which estimates d̂ = 1. We are hesitate to determine the structure dimension using the

chi-squares tests offered by those inverse regression methods (e.g., SIR, PHD), since

their statistical validity is very questionable for this dataset due to serious linearity

condition violation. With d0 = 1, we compute the SR estimate and report it in Table

5. For ease of comparison, we also report the estimates of SIR, PHD, SAVE, Fourier,

SCR, and MAVE in the same table. The estimates are adjusted so that the sample

correlation coefficient between B̄>X i and Yi is positive, where B̄ stands for an arbitrary

estimate (e.g., SIR estimate).

From Table 5, we note first that the SR estimate is very reasonable. It clearly

detects that a firm’s current year earnings (ROE) has the largest positive effect on

its future earnings. Furthermore, it suggests that the firms with better asset turnover

ratio (ATO, i.e., better capability to make use of its asset), profit margin (PM, i.e.,

better capability to realize profit), and growth rate (GROWTH, i.e., a fast growing yet

promising company) tend to have better earnings next year. Lastly, the SR estimate

indicates that the effects of debt level (LEV) and firm size (ASSET) are very small.

Both the signs and the magnitude of those estimates match their economics meanings
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very well. As one can see from Figure 1(B), the SR estimate produces a very interesting

regression pattern. The part with B̄>X i > 0 is approximately linear, but the part with

B̄>X i < 0 is quite diverse.

We remark that the pattern revealed by the SR estimate can be well explained.

Note that the firms with B̄>X i < 0 typically have: negative current year earnings

(ROE), poor capability to manage its asset (ATO), little profit margin (PM), or slow

growth rate (GROWTH). Under the pressure of possible severe punishment from the

China Security Regulation Commission (the government body overseeing the stock

market; see Wang, 2007), those firms may take risks to alternate their normal business

operations and even manipulate their earnings report. As a consequence, their earnings

pattern demonstrates a very high volatility as shown in Figure 1(B). In contrast, the

firms with B̄>X i > 0 suffer much less pressure on such an issue, and tend to maintain

their normal business operation. This makes their earnings pattern linear and very

predictable; see the top right corner of Figure 3(B).

Compared with the SR estimate, we find that both the PHD and SAVE estimates

produce different signs for ROE and ATO, respectively. This implies that the firms

making better use of their asset tend to have worse earnings capability. Such a con-

clusion clearly contradicts common economic theory. The problem with the SIR, SCR,

and MAVE estimates is that they fail to identify ROE as the most important predictor.

The only comparable estimation is the Fourier estimate, which shares the same signs

as the SR estimate for each variable but has very different value for GROWTH. As one

can see from Figures 1(A) and 1(B), both estimates (i.e., Fourier and SR) share very

similar earnings patterns. The regression relationships demonstrated by both estimates

are complicated and contaminated with a lot of extreme values and possible outliers.

Hence, we do not have a natural measure to compare their goodness of fits. How-

ever, because the primary patterns demonstrated by both methods are monotonically

increasing, a better estimate is expected to generate higher rank-based correlation co-
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efficient. This motivates us to calculate the the sample correlation coefficients between

the ranks of B̄>X i and Yi. We find such a rank-based correlation coefficient is as high

as 78.3% for the SR estimate but only 57.2% for the Fourier estimate, implying that

the SR estimate might be more accurate.

To further confirm SR’s outstanding performance, we follow the Editor’s advice

and conduct the following bootstrap-type experiment. We treat our original sample

(with 1042 observations) as if they were the population. For any method, the estimate

produced by the whole dataset can be treated as the population parameter. We then

draw random samples without replacement from the “population” with various sample

sizes (n = 100, 200, and 400). Thereafter, the same type of estimate can be computed

based on those random samples. The estimation error can then be computed in the

same manner as our simulation studies. One might wonder whether d0 = 1 (an estimate

by SR) is fair to other inverse regression methods, we considered here two different

working dimensions, i.e., d = 1 and d = 2. We replicate the experiment for a total of

100 times for each parameter setting and summarize the averaged estimation error in

Table 6.

Firstly, if the true structure dimension is indeed d0 = 1, both Ye and Weiss (2003)

and Zhu and Zeng (2006) demonstrated that the estimation variability associated with

the second spurious direction should be large, which in turn makes the overall estima-

tion variability with d = 2 large. Thus, we would expect that SR’s estimation error

with d = 1 to be relatively small but d = 2 to be relatively large (Ye and Weiss, 2003;

Zhu and Zeng, 2006). With d = 1, SR’s estimation error is rather small and steadily

decreases as sample size increases. But, SR’s estimation error increases substantially

with d = 2; see Table 6. Such a pattern further supports our CV estimation result

d0 = 1. We find that SIR and SAVE estimates follow similar patterns. From that per-

spective, SIR and SAVE also support d0 = 1. Similar pattern also holds for SCR. For

the Fourier method, if we strictly follows the bootstrap procedure as suggested by Zhu
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and Zeng (2006), we find the Fourier method also agree with d0 = 1. If we näıvely apply

the chi-square tests (developed under the linearity condition) to the PHD method (Li,

1991; Cook, 1998a), we find the true structure dimension is 0, which is certainly not

correct. The problem with the MAVE estimate is that its performance is too poor to

make any meaningful conclusion, regardless of whether d = 1 or d = 2. Overall speak-

ing, it seems that d0 = 1 is the most plausible dimension for this particular dataset. It

is also remarkable that, with d0 = 1, the estimation error of SR is substantially smaller

than those of all its competitors, which corroborates our simulation findings very well.

To conclude this study, we find that our SR method performs best among its com-

petitors. It outperforms the PHD and SAVE methods by keeping the coefficient signs

consistent with their economic meaning. It outperforms the SIR, SCR, and MAVE

methods by keeping the estimate interpretable. It also outperforms the Fourier method

by delivering more accurate estimates.

Remark 3.1. We would like to kindly remark that this ROE dataset is a case where the

linearity condition is violated seriously. Consequently, this is a situation unfavorable

to those inverse regression methods. For such a reason, one should not mistakenly take

this example as an evidence that inverse regression method always perform poorly

in real data analysis. In fact, as demonstrated by many researchers, those inverse

regression methods (e.g., SIR and SAVE) perform fairly well as long as the linearity

condition is reasonably satisfied (Cook and Yin, 2001). In that situation, we always

find SR’s performance is comparable or even better. The only purpose of this example,

per Editor’s important advice, is to demonstrate that SR might still work fairly well

in the situation where all other methods fail.

4. CONCLUDING REMARKS

We propose in this article a SR method for sufficient dimension reduction. The

new method is carried out by slicing the region of the response (Li, 1991) and then
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applying the MAVE method to each slice (Xia et al., 2002). The slicing procedure helps

us discovering the complicated CS structure, while MAVE frees us from the linearity

condition and also improves the estimation accuracy. We show both theoretically and

numerically that SR is able to recover the CS exhaustively, which is another advantage

over many existing methods.

Another interesting issue is the
√

n-consistency. Since each slice produces only one

directional estimate, SIR achieves the
√

n-consistency. Such an operation is equivalent

to assuming a single-index working regression model for (2.2). Similar idea can be

applied to SR too, but under similar design assumptions; see the discussion in Remark

2.8. It is remarkable that the
√

n-consistency of SIR is just a theoretical result, and

its implication in finite sample is quite limited. For example, our numerical experience

suggests that SIR frequently misses important CS directions when d0 > 2, which in

turn makes its estimation accuracy very poor; see Example 3.

Finally, we need to point out that we do not claim SR as the only best dimension

reduction method. In fact, different favorable circumstances do exist for different

dimension reduction methods. However, the overall comparison made in the paper, in

terms of both theoretical analysis and numerical studies, suggests that SR is indeed a

very good method for dimension reduction.

APPENDIX A. PROOF OF PROPOSITION 2

The conclusion (i) is obvious, hence, its proof is omitted. We only focus on the

proof of (ii). If E{Λ(Y )} is not of a full rank, there must exist a vector η1 ∈ Rd0 such

that ‖η1‖ = 1 but η>1 E{Λ(Y )}η1 = E[{η>1 5G(Y |B>
0 X)}2] = 0, which immediately

suggests that

η>1 5G(Y |B>
0 X) = 0 a.s. (A.1)

Expand η1 to η = (η1, · · · ,ηd0
) ∈ Rd0×d0 such that η>η = Id0 , where Id0 stands for
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a d0-dimensional identity matrix. Define function G̃(y|u) = G(y|ηu). It follows then

G(Y |B>
0 X) = G

(
Y

∣∣∣η{B0η}>X
)

= G
(
Y

∣∣∣ηB̃
>
0 X

)
= G̃

(
Y

∣∣∣B̃>
0 X

)
,

where B̃0 = B0η is another basis of the CS, i.e., S(B̃0) = S(B0). Hence, G̃(Y |B̃>
0 X)

is nothing but another representation of G(Y |B>
0 X) in terms of B̃

>
0 X. We then study

how G̃(Y |·) varies along the direction β̃
>
1 X = η>1 B>

0 X. We have

∂G̃(Y |B̃>
0 X)

∂(β̃
>
1 X)

=
∂G(Y |ηB̃

>
0 X)

∂(β̃
>
1 X)

= 5G(Y |B>
0 X)η1 = 0 a.s.,

where the last equality is due to (A.1). This suggests that the function G(Y |B>
0 X) =

G̃(Y |B̃>
0 X) never varies along the direction β̃

>
1 X. Thus, G(Y |B>

0 X) = G̃(Y |B̃>
0 X),

as a function of B̃0X, only depends on the directions β̃
>
j X = η>j B>

0 X for j ≥ 2.

This implies that the CMS dimension of I(Y ≤ y) is less than d0. By Proposition 1,

such a conclusion further suggests that the CS dimension of Y |X is less than d0. Such

a conclusion contradicts the definition of d0. Consequently, E{Λ(Y )} must be of full

rank. This completes the proof.
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Table 4: The Mean (Standard Deviation) of the Estimation Errors
with Different Initial Estimates

The Initial Estimate
Model OLS SIR SAVE OPG

I 0.07 (0.018) 0.07 (0.018) 0.07 (0.018) 0.07 (0.018)
II 0.10 (0.021) 0.10 (0.021) 0.10 (0.021) 0.10 (0.021)
III 0.15 (0.035) 0.15 (0.035) 0.15 (0.035) 0.15 (0.035)
IV 0.17 (0.037) 0.17 (0.037) 0.17 (0.037) 0.17 (0.037)

Table 5: The ROE Data Analysis Results

Variable SIR PHD SAVE Fourier SCR MAVE SR
ROE 0.528 -0.118 0.984 0.965 0.396 0.103 0.956
ATO 0.283 0.230 -0.012 0.055 0.465 -0.762 0.138
PM 0.792 0.864 -0.074 0.223 0.451 0.505 0.124

LEV -0.000 -0.211 -0.146 -0.106 -0.284 -0.150 -0.056
GROWTH 0.109 0.345 0.034 0.035 0.354 0.321 0.216

ASSET 0.048 0.149 0.059 0.056 0.211 0.167 0.044

Table 6: The Mean (Standard Deviation) of the Estimation Errors
Based on the Bootstrap ROE Data

d n SIR PHD SAVE Fourier SCR MAVE SR
1 100 0.32 0.75 0.46 0.31 0.62 0.94 0.14

(0.162) (0.232) (0.294) (0.195) (0.177) (0.089) (0.060)
200 0.20 0.72 0.47 0.20 0.45 0.94 0.09

(0.126) (0.251) (0.307) (0.150) (0.164) (0.104) (0.036)
400 0.13 0.64 0.31 0.12 0.31 0.95 0.06

(0.090) (0.263) (0.243) (0.068) (0.121) (0.085) (0.021)
2 100 0.92 0.65 0.91 0.37 0.73 0.96 0.76

(0.095) (0.266) (0.117) (0.249) (0.218) (0.045) (0.220)
200 0.87 0.55 0.89 0.20 0.59 0.94 0.75

(0.147) (0.277) (0.118) (0.147) (0.253) (0.072) (0.233)
400 0.78 0.44 0.82 0.11 0.38 0.92 0.64

(0.193) (0.276) (0.177) (0.046) (0.210) (0.105) (0.230)

32



Figure 1: The Effect of Slice Number on Estimation Accuracy
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Figure 2: The
√

n-Consistency of the SR Estimate
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Figure 3: The Scatter Plots of the ROE Data
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