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Abstract

The least absolute shrinkage and selection operator (lasso) has been widely used in regression
shrinkage and selection. In this article, we extend its application to the REGression model
with AutoRegressive errors (REGAR). Two types of lasso estimators are carefully studied.
The first is similar to the traditional lasso estimator with only two tuning parameters (one for
regression coefficients and the other for autoregression coefficients). These tuning parameters
can be easily calculated via a data driven method, but the resulting lasso estimator may not
be fully efficient (Fan and Li, 2001). In order to overcome this limitation, we propose a second
lasso estimator which uses different tuning parameters for each coefficient. We show that this
modified lasso is able to produce the estimator as efficiently as the oracle. Moreover, we propose
an algorithm for tuning parameter estimates to obtain the modified lasso estimator. Simulation
studies demonstrate that the modified estimator is superior to the traditional one. One empirical
example is also presented to illustrate the usefulness of lasso estimators. The extension of lasso
to the autoregression with exogenous variables (ARX) model is briefly discussed.

Key words: ARX; Lasso; Oracle Estimator; REGAR

1 Introduction

The linear regression model is a commonly used statistical tool for analysis of the relationships
between response and explanatory variables. One of its standard assumptions is that different ob-
servations are independent. However, significant serial correlation might occur when the data are
collected sequentially in time. In this case, the linear REGression with AutoRegressive errors (RE-
GAR) model is often considered, as it takes into account the autocorrelated structure in regression
analysis (Shumway and Stoffer, 2000; Tsay, 1984; Harvey, 1981).

In model building, it is known that making the model unnecessarily complex can degrade the
efficiency of the resulting parameter estimator and yield less accurate predictions. Hence, two
heuristic selection criteria, AIC (Akaike, 1973) and BIC (Schwarz, 1978), are often applied to select
regression variables. In the context of time series, both criteria are also employed to choose the order
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of the autoregressive (AR) process (Brockwell and Davis, 1991; Choi, 1992; McQuarrie and Tsai,
1998; Shumway and Stoffer, 2000). Moreover, Ramanathan (1989) extends the application of AIC
and BIC to the linear REGAR model. However, as noted by researchers, the statistical performance
of AIC and BIC can be unstable (Breiman, 1996), and selection bias may cause inference problems
(Hurvich and Tsai, 1990).

To amend the deficiencies of classical linear model selections, Tibshirani (1996) developed the
least absolute shrinkage and selection operator (lasso), which selects variables and estimates param-
eters simultaneously. This motivated us to obtain the shrinkage estimator in the AR process. To
this end, we employ the lasso-type penalty not only on the regression coefficients but also on the
autoregression coefficients. Consequently, a direct extension of lasso to the REGAR model involves
two regularization parameters (i.e., one for regression coefficients and the other for autoregression
coefficients), which can be easily tuned via a data driven method (e.g., cross-validation). We show
that the resulting lasso estimator satisfies a Knight & Fu - type asymptotic property (Knight and
Fu, 2000). However, it suffers an appreciable bias (Fan and Li, 2001). Hence, the traditional lasso
estimator cannot achieve the same efficiency as the oracle, i.e., the estimator obtained based on
the true model (Fan and Li, 2001).

To improve the utility of the traditional lasso approach to the REGAR model, we modify the
penalty function so that different tuning parameters can be used for each coefficient. As a re-
sult, large amounts of shrinkage can be used for the insignificant variables, while small amounts of
shrinkage can be used for the significant variables. We show that the resulting modified lasso esti-
mator shares the same asymptotic distribution as the oracle. In practice, however, simultaneously
tuning many regularization parameters is not realistic. Therefore, we further propose the tuning
parameter algorithm via the unpenalized REGAR estimator. Simulation studies indicate that the
resulting lasso estimator outperforms the traditional lasso estimator.

The rest of the paper is organized as follows. Section 2 introduces the REGAR model and the
two lasso estimators. The asymptotic theories of the two lasso estimators are established in Section
3. The practical implementations of these two estimators are developed in Section 4, and numerical
studies are presented in Section 5. Section 6 concludes the article with a brief discussion.

2 Least Absolute Shrinkage and Selection Operators

Consider the linear regression with autoregressive errors (REGAR) model

yt = x′tβ + et, (t = 1, · · · , n0), (1)

where xt = (xt1, · · · , xtp)′ is the p-dimensional regression covariate and β = (β1, · · · , βp)′ is the
associated regression coefficient. In addition, the variable et follows the autoregressive process

et = φ1et−1 + φ2et−2 + · · ·+ φqet−q + εt, (2)

where φ = (φ1, · · · , φq)′ is the autoregression coefficient and εt are independent and identically
distributed random variables with mean 0 and variance σ2. Moreover, we define the regression and
autoregressive parameters as θ = (β′, φ′)′. For practical implementation, it is a common practice
to standardize the predictor xtj so that it has zero mean and unit variance (Tibshirani, 1996).
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Analogously, the response yt is scaled by dividing it with the estimate of [var(et)]1/2.

Suppose that εt in (2) follows a normal distribution and the first q observations are fixed. Then
the conditional likelihood function of the remaining n0 − q observations, (yq+1, · · · , yn0)

′, is

(
1√
2πσ

)n

exp



−

1
2σ2

n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2
 ,

where n = n0 − q is the effective sample size. Maximizing the above likelihood function yields a
conditional maximum likelihood estimator (MLE) of θ. This estimator can also be obtained by
minimizing the following least squares type objective function,

Ln(θ) =
n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2

, (3)

where Ln(θ) is an extension of the method proposed by Cochrane and Orcutt (1949) for q = 1; see
Harvey (1981) and Hamilton (1994).

In order to shrink unnecessary coefficients to zero, we next adapt Tibshirani’s (1996) approach
for obtaining the estimator by minimizing the following lasso criterion

Qn(θ) =
n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2

+ n

p∑

j=1

λ|βj |+ n

q∑

j=1

γ|φj |. (4)

Because lasso uses the same tuning parameters λ and γ for the regression and autoregressive
coefficients, respectively, the resulting estimator, θ̂ = (β̂′, φ̂′)′, may suffer an appreciable bias. This
is mainly due to the fact that all the regression (or autoregression) coefficients share the same
amount of shrinkage (see Fan and Li, 2001). To overcome this limitation, we propose the following
modified lasso criterion, lasso∗,

Q∗
n(θ) =

n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2

+ n

p∑

j=1

λ∗j |βj |+ n

q∑

j=1

γ∗j |φj |, (5)

which allows for different tuning parameters λ∗j and γ∗j for different coefficients. As a result, a
larger amount of shrinkage can be applied for the insignificant coefficients, while a smaller amount
of shrinkage can be employed to the significant coefficients. Hence, the resulting estimator, θ̂∗ =
(β̂∗′ , φ̂∗′)′, is expected to have a smaller bias than θ̂. The detailed investigations of these two
estimators are given in the next section.

3 Theoretical Properties

To study the theoretical properties of the two lasso estimators, we assume that there is a correct
model with the regression and autoregression coefficients θ0 = (β0′ , φ0′)′ = (β0

1 , · · · , β0
p , φ0

1, · · · , φ0
q)
′.

Furthermore, we assume that there are a total of p0 ≤ p non-zero regression coefficients and q0 ≤ q
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non-zero autoregression coefficients. For the sake of convenience, we define S1 = {1 ≤ j ≤ p : β0
j 6=

0} and S2 = {1 ≤ j ≤ q : φ0
j 6= 0}. Then, the set S1 (S2) contains the indices of the significant

regression (autoregression) coefficients, while its complement Sc
1 (Sc

2) contains the indices of the
insignificant regression (autoregression) coefficients. Next, let βS1 denote the p0 × 1 significant
regression coefficient vector with β̂S1 as its associated lasso estimator. Moreover, other related
parameters and their corresponding estimators are analogously defined (e.g., βSc

1
, β̂Sc

1
, β̂∗S1

, φS2 ,
φ̂S2 , etc). Finally, let θ0

1 = (β0′
S1

, φ0′
S2

)′ and θ0
2 = (β0′

Sc
1
, φ0′
Sc

2
)′. Then, θ̂k and θ̂∗k (k = 1, 2) are the

associated lasso and lasso* estimators, respectively. To investigate the theoretical properties of θ̂
and θ̂∗, we introduce the following conditions.

(C.1) The sequence {xt} is independent of {εt}.
(C.2) All roots of the polynomial 1−∑q

j=1 φ0
jz

j are outside the unit circle.

(C.3) The error εt has the finite fourth order moment, i.e., E(ε4t ) < ∞.

(C.4) The covariate xt is strictly stationary and ergodic with finite second order moment (i.e.,
E‖xt‖2 < ∞). Furthermore, the following matrix is positive definite,

B = E






xt −

q∑

j=1

φ0
jxt−j





xt −

q∑

j=1

φ0
jxt−j



′
 .

The technical conditions above are typically used to assure the
√

n-consistency and asymptotic
normality of the unpenalized least square estimator.

3.1 The Lasso Estimator

In this subsection, we study the property of the traditional lasso estimator given below.

Theorem 1. Assume that
√

nλn → λ0 and
√

nγn → γ0 for some λ0 ≥ 0 and γ0 ≥ 0. Then, under
the conditions (C.1) - (C.4), we have

√
n(θ̂ − θ0) →d argmin{κ(δ)}, where

κ(δ) = −2δ′w + δ′Σδ + λ0

p∑

j=1

{
ujsgn{β0

j }I(β0
j 6= 0) + |uj |I(β0

j = 0)
}

+γ0

q∑

j=1

{
vjsgn{φ0

j}I(φ0
j 6= 0) + |vj |I(φ0

j = 0)
}

,

δ = (u′, v′)′, w ∼ N(0, σ2Σ), Σ = diag{B, C}, C = (ξ|i−j|), and ξk = E(etet+k).

The proof is given in Appendix A. Theorem 1 shows that the lasso estimator possesses a Knight
& Fu - type asymptotic property (Knight and Fu, 2000). This implies that the tuning parameters
used in the traditional lasso estimator cannot shrink to 0 at a speed faster than n−1/2. Otherwise,
both λ0 and γ0 degenerate to zero and κ(δ) becomes a standard quadratic function,

κ(δ) = κ(u, v) = −2(u′, v′)w + (u′, v′)Σ(u′, v′)′,

4



which is unable to produce sparse solutions. Therefore, Theorem 1 suggests that λ0 > 0 and γ0 > 0
are needed for obtaining the traditional lasso estimator.

Remark 1. In a standard regression model with independent observations, Fan and Li (2001) noticed
that the traditional lasso estimator may suffer an appreciable bias. Therefore, it is of interest to
investigate whether the traditional lasso estimator for the REGAR model encounters the same
problem. For the sake of illustration, we consider a special case with β0

j > 0 for 1 ≤ j ≤ p and
φ0

j = 0 for 1 ≤ j ≤ q. If the minimizer of κ(δ) can correctly identify the true model, then u 6= 0
but v = 0. In addition, κ(δ) satisfies the following equation

∂κ(u, 0)
∂u

= −2w1 + 2u′B + λ01 = 0,

where w1 consists of the first p components of w and 1 is a p× 1 vector with the elements of ones.
As a result,

√
n(β̂ − β0) →d u = B−1(w1 − 0.5λ01), which is distributed as N(−0.5λ0B

−11, B−1).
Because λ0 > 0, Theorem 1 indicates that the traditional lasso estimator is asymptotically biased.
Thus, it is not as efficient as the oracle estimator, whose asymptotic distribution is N(0, B−1).

3.2 The Lasso* Estimator

In this subsection, we focus on the modified lasso (lasso*) estimator. To facilitate studying the
properties of this estimator, we introduce the following notation:

an = max{λ∗j1 , γ∗j2 , j1 ∈ S1, j2 ∈ S2} and bn = min{λ∗j1 , γ∗j2 , j1 ∈ Sc
1, j2 ∈ Sc

2},

where λ∗j1 and γ∗j2 are functions of n. We first investigate the consistency of the lasso* estimator.

Lemma 1. Assume that an = o(1) as n → ∞ . Then under the conditions (C.1) - (C.4), there
exists a local minimizer θ̂∗ of Q∗

n(θ) such that θ̂∗ − θ0 = Op(n−1/2 + an).

The proof is given in Appendix B. Lemma 1 implies that if the tuning parameters associated with
the significant regression variables and autoregressive orders converge to 0 at a speed faster than
n−1/2, then there exists a local minimizer of Q∗

n(θ), which is
√

n-consistent.

We next show that if the tuning parameters associated with the non-significant regression and
autoregressive variables shrink to 0 slower than n−1/2, then their regression and autoregression
coefficients can be estimated exactly as 0 with probability tending to one.

Theorem 2. Assume that
√

nbn →∞ and ‖θ̂∗ − θ0‖ = Op(n−1/2). Then

P (β̂∗Sc
1

= 0) → 1 and P (φ̂∗Sc
2

= 0) → 1.

The proof is in Appendix C. Theorem 2 shows that lasso* has the ability to consistently produce
a sparse solution for insignificant regression and autoregression coefficients. Furthermore, this
theorem, together with Lemma 1, indicates that the

√
n-consistent estimator θ̂∗ must satisfy P (θ̂∗2 =

0) → 1 when the tuning parameters fulfill the appropriate conditions (e.g., λj and γj are defined as
in equations (7) of the next section). Finally, we obtain the asymptotic distribution of the lasso*
estimator.
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Theorem 3. Assume that
√

nan → 0 and
√

nbn →∞. Then, under the conditions (C.1) - (C.4),
the component θ̂∗1 of the local minimizer θ̂∗ given in Lemma 1 satisfies

√
n(θ̂∗1 − θ0

1) →d N(0, σ2Σ−1
0 ),

where Σ0 is the submatrix of Σ corresponding to θ0
1.

The proof is given in Appendix D. Theorem 3 implies that if the tuning parameters satisfy the
conditions

√
nan → 0 and

√
nbn →∞, then, asymptotically, the resulting lasso* estimator can be

as efficient as the oracle estimator.

4 Algorithm

After arriving at an understanding of the properties of the two lasso estimators, it is natural
to implement them for real applications. To this end, we propose the following algorithm to
obtain the local minimizers for lasso estimators θ̂ and θ̂∗. In addition, we provide an approach to
simultaneously estimate a total of (p + q) tuning parameters for the lasso* estimator.

4.1 The Iterative Process

The objective function Q∗
n(θ) contains Qn(θ) as a special case (i.e., λj = λ and γj = γ). Therefore,

we focus mainly on the optimization problem of Q∗
n(θ) in the rest of this section. Because Equation

(5) contains both regression and autoregression parameters, it is sensible to optimize the objective
function Q∗

n(θ) iteratively by minimizing the following two lasso-type objective functions:

n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2

+ n

p∑

j=1

λj |βj | with a fixed φ,

and
n0∑

t=q+1


(yt − x′tβ)−

q∑

j=1

φj(yt−j − x′t−jβ)




2

+ n

q∑

j=1

γj |φj | with a fixed β.

As a result, many well developed procedures can be used to find the solution for the above non-
concave penalized functions. For example, quadratic programming (Tibshirani, 1996), the shooting
algorithm (Fu, 1998), local quadratic approximation (Fan and Li, 2001), and, most recently, the
least angle regression method (Efron et al., 2004). For the sake of simplicity, we adapt the local
quadratic approximation procedure, which was first developed by Fan and Li (2001) and has been
used extensively in the literature (e.g., see Fan and Li (2002), Fan and Peng (2004), and Cai et al.
(2005)). Our simulation studies indicate that this procedure converges with a reasonable degree of
speed and accuracy.

Remark 2. The solution of the local quadratic approximation does not yield a sparse solution.
However, the small parameter estimate produced by the local quadratic approximation can be
arbitrarily close to 0, as long as a sufficiently small threshold for its tolerance of accuracy is set
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up. For the sake of illustration, the ordinary linear regression is considered. In this case, the local
quadratic approximation produces the one step ahead estimate, β(m+1), by minimizing

||Y −Xβ(m+1)||2 + n

p∑

j=1

λj

(β(m+1)
j )2

|β(m)
j |

,

where Y = (y1, · · · , yn0)
′ and X = (x1, · · · , xn0)

′. If one of the coefficients (e.g., β
(m)
1 ) is very small

(but not sparse), then the ridge effect induced by β
(m)
1 , λ1/|β(m)

1 |, can be very large. As a result,
the value of |β(m+1)

1 | is forced to be even smaller. Because this is an iterative process, the value of
|β(m)

1 | can be arbitrarily close to 0 as long as we can have a sufficiently small threshold for accuracy.
Therefore, it is possible to set up an arbitrarily small thresholding value to shrink small estimates
to be exactly 0. By doing so, the sparse solution is obtained. In simulation studies, we use the
thresholding value of 10−9 so that any coefficient whose the absolute value is smaller than 10−9, is
shrunk to be exactly 0.

4.2 Local Convexity

Although the proposed iterative process is easy to implement, one cannot be assured that the
resulting estimator converges to the global minimizer. This is because the least squares term,
Ln(θ), in the objective function Q∗

n(θ) is not a convex function. This motivates us to develop the
following theorem, which shows that there is a sufficiently small but fixed local region containing
the true parameter in which Ln(θ) is almost surely guaranteed to be convex.

Theorem 4. There is a probability null set N0 and a sufficiently small but fixed δ > 0, such that
for any ω /∈ N0, there is an integer nω, such that for any n > nω, Ln(θ) is convex in θ ∈ Bδ, where
Bδ = {θ : ‖θ − θ0‖ < δ} is a ball containing the true value θ0.

The proof of the above theorem can be obtained upon request from the authors. Theorem 4
indicates that, with probability tending to 1, there will be at most one local minimizer located in
Bδ. According to Lemma 1, θ̂∗ exists and is consistent in probability. Hence, Theorem 4 together
with Lemma 1 implies that, with probability tending to one, θ̂∗ is the unique local minimizer in Bδ.
As a result, the desired local minimizer θ̂∗ can be obtained by finding the unique local minimizer
in Bδ.

Remark 3. Theorem 4 is applicable not only for the modified lasso estimator θ̂∗, but also for the
traditional lasso estimator θ̂. Specifically, Theorem 4 together with Theorem 1 implies that θ̂ can
be obtained by finding the unique local minimizer in Bδ. In practice, however, it is not necessary to
know Bδ exactly. This is because if the initial estimator is consistent, then it must be located within
Bδ with a probability tending to 1. As a result, the proposed iterative process (with aforementioned
initial estimator) leads to the local minimizer (i.e., θ̂∗ or θ̂) in Bδ with probability tending to 1.
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4.3 Initial Estimator

To obtain the consistent estimator for the suggested iterative process, we consider the following
ordinary least squares estimator as an initial estimator for the regression coefficient β0:

β̂(0) = (X ′X)−1(X ′Y ).

Using the fact that εt is independent of xt (see Condition (C.1)), it can be shown that β̂(0) is a con-
sistent estimator of β0 under classical regularity conditions. Then, computing the ordinary residual
êt = yt − x′tβ̂(0) and employing the least squares approach by fitting êt versus (êt−1, · · · , êt−q), we
obtain the initial estimator for the autoregressive coefficient φ0 given below.

φ̂(0) = (W ′W )−1(W ′V ),

where V = (êq+1, · · · , ên0)
′ and W is a n× q matrix with the t’th row given by (êt+q−1, · · · , êt). It

can also be shown that φ̂(0) is a consistent estimator of φ0 under classical regularity conditions.

4.4 Tuning Parameters

After obtaining the initial estimator, we need to select the tuning parameters in the iterative
process to complete the whole algorithm. The traditional lasso estimator contains only two tuning
parameters (i.e., λ and γ). Hence, one can directly apply the commonly used cross-validation (CV)
method to select the optimal tuning parameters. Due to the time series structure, we use the first
half of the data for model training and the rest for model testing. In the classical linear regression
setting, however, Shao (1997) indicated that BIC would perform better than CV if the true model
has a finite dimension and is among the candidate models. This motivates us to adapt Zou et al’s
(2004) BIC-type tuning parameter selector

BIC = log(σ̂2) + d̂f × log n/n, (6)

where σ̂2 = n−1
∑n0

t=q+1

[
(yt − x′tβ̂)−∑q

j=1 φ̂j(yt−j − x′t−j β̂)
]2

and d̂f is the number of nonzero

coefficients of θ̂.

As for the modified lasso estimator, it becomes a challenging task since there are (p + q)
regularization parameters that need to be tuned. Following an anonymous referee’s suggestion, we
propose the adaptive estimators:

λ∗j = λ∗
log(n)
n|β̃j |

and γ∗j = γ∗
log(n)
n|φ̃j |

, (7)

where θ̃ = (β̃′, φ̃′)′ is the unpenalized least square estimator by assuming that λ = γ = 0 in
Equation (4). In addition, both λ∗ and γ∗ are positive constants and estimated from the data.
The advantage of (7) is that it converts the original (p + q)-dimensional tuning problem for finding
λj and γj into a two dimensional task for searching λ∗ and γ∗, which can be easily determined by
using either CV or BIC.

According to Theorem 1, θ̃ is an
√

n-consistent estimator of θ0. Hence, for any β0
j 6= 0 and
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φ0
j 6= 0, we have λ∗j = Op(log n/n) = op(n−1/2) and γ∗j = Op(log n/n) = op(n−1/2). Consequently,

both λ∗j and γ∗j satisfy the condition
√

nan → 0, where an is defined in Section 3.2. In contrast, for
any β0

j = 0 and φ0
j = 0, Theorem 1 implies that β̃j = Op(n−1/2) and φ̃j = Op(n−1/2). Therefore,

√
nλ∗j = λ∗

log(n)√
nβ̃j

and
√

nγ∗j = γ∗
log(n)√

nφ̃j

,

where the denominators of the above equations are Op(1) and the numerators go to infinity as
n → ∞. As a result,

√
nλ∗j →p ∞ and

√
nγ∗j →p ∞, which imply that both of them satisfy the

condition
√

nbn →∞, where bn is defined in Section 3.2. In sum, the proposed tuning parameters
λ∗j and γ∗j are able to produce the modified lasso estimator θ̂∗, which is as efficient as the oracle
estimator asymptotically.

5 Simulation and Example

5.1 Simulation Results

We present Monte Carlo simulations to evaluate the finite sample performance of the lasso esti-
mators. They consist of the traditional and modified lasso estimators with the tuning parameters
selected by CV and BIC, respectively. For the traditional lasso estimator, we adapt Zou and
Hastie’s (2005) approach to select the optimal tuning parameters, λ̂ and γ̂, from the grid points
{0, 0.01, 0.1, 1.0, 10, 100}. For the lasso* estimator, the optimal tuning parameter τ̂ is selected
from one of 6 equally spaced grid points from 0 to 0.5 (i.e., 0, 0.1, 0.2, · · · , 0.5). Our simulation
experience seems to suggest that such a search region and spacing work out satisfactorily. In addi-
tion, the estimation algorithm stops if

∑
j |θ(m)

j − θ
(m+1)
j | < 10−12, where θ(m) = (θ(m)

1 , · · · , θ
(m)
p+q)

′

is the estimator of θ at the m’th iteration, θ
(m)
j = β

(m)
j for j = 1, · · · , p, and θ

(m)
j = φ

(m)
j−p for

j = p + 1, · · · , p + q. When the convergence is obtained, any parameter estimator whose absolute
value is less than 10−9 is shrunk to 0. Based on our extensive simulation studies, the above proposed
stopping and shrinking rules lead to a reasonable convergence speed.

We generated the data from the following REGAR model

yt = 3.0xt1 + 1.5xt2 + 2.0xt5 + et, (8)

where
et = 0.5et−1 − 0.70et−3 + σεt, (9)

and εt were independent and identically standard normal random variables for t = 1, · · · , n0. The re-
gression and autocorrelated coefficients are β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)′ and φ0 = (0.50, 0,−0.70, 0, 0)′,
respectively. In addition, the covariate xt = (xt1, · · · , xt8)′ were independently generated from the
multivariate normal distribution with mean 08×1, and the pairwise correlation between xtj1 and
xtj2 is ρ|j1−j2|. Note that the regression model (8) is adapted from Tibshirani (1996) and has been
used in other simulation studies (e.g., see Fan and Li, 2001; Zou et al., 2005; Leng et al., 2005),
while the autoregression model (9) is modified from Shi and Tsai (2004).

In this study, we consider three sample sizes (n0 = 50, 100, and 300) and two standard deviations
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(σ = 3.0 and σ = 0.5). In addition, the correlation coefficients (ρ values) are 0.75, 0.50, and 0.25,
which represent the high, moderate, and low linear correlations between the covariates. For each
setting, a total of 1,000 realizations were carried out, and the percentage of correctly (under, over)
estimated numbers of regression variables, the percentage of correctly (under, over) estimated
numbers of autoregressive orders, and the percentage of the correct model identified by two lasso
estimators were computed.

When ρ = 0.5, Table 1 shows that lasso performs poorly across various sample sizes and
noises. This is because lasso’s tuning parameter is fixed, and therefore is not able to effectively
shrink non-significant coefficients to zero. As a result, it tends to overfit in both regression and
autoregression variable selection. In contrast, the lasso* with CV selector (lasso*-CV) demonstrates
a considerable improved finite sample performance. Furthermore, the lasso* with BIC selector
(lasso*-BIC) performs the best in correct model identifications across various sample sizes and
noise levels. Moreover, as the sample size increases, the correct model percentage approaches 100%
rapidly. In sum, we recommend employing lasso*-BIC to jointly choose variables and estimate
coefficients.

In addition to the correct model identification, an anonymous referee suggested comparing
the prediction accuracies of four lasso estimates in terms of their mean squared prediction error
(MSPE). To this end, we generated an additional 10,000 independent testing samples within each
realization, which are used to evaluate the prediction accuracy. Analogous to the correct model
selection results, Table 1 shows that lasso-CV performs the worst, while lasso*-BIC outperforms
the rest of lasso estimates. Similar patterns (not presented here) are also found when ρ = 0.25 and
ρ = 0.75.

5.2 Electricity Demand Study

We consider a dataset taken from Ramanathan (1989), which studies the electricity consumption
of residential customers served by San Diego Gas and Electric Company. The data contains a total
of 53 quarterly observations, running from the first quarter of 1970 to the first quarter of 1983.
The response variable is the electricity consumption, which is measured by the log-transformed
electricity consumption per residential customer in Millions of Kilowatt-Hours (LKWH). The five
explanatory variables are the logarithm of per capita real income (LY), the logarithm of real average
price of residential electricity in dollars per Kilowatt-Hour (LELP), the logarithm of real ex-post
average price of residential gas in Dollars per Therm (LGSP), the cooling degree days per quarter
(CDD), and the heating degree days per quarter (HDD).

We first fit the data with the classical multiple regression model, and the resulting estimated
equation is ˆLKWH = −8.988+0.819LY +0.154LELP−0.159LGSP+0.00012CDD+0.00042HDD.
The signs of the parameter estimates of variables LY, CDD, and HDD meet our expectations. In
other words, an increase in real income (LY), the cooling degree days (CDD), or the heating
degree days (HDD) yields more demand for heating. However, the variables LELP and LGSP
have unexpected signs since the higher electricity price (LELP) and the higher gas price (LGSP)
result in more and less electricity consumption, respectively. Because this is a time series data,
the unexpected signs may occur as a result of ignoring the autocorrelation structure. Hence,
Ramanathan (1989) naturally recommended the regression model with autoregressive errors.
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Following Ramanathan’s suggestion, we employ lasso and lasso* with CV and BIC to jointly
shrink both the regression and autoregression coefficients. The p and q of the candidate models are
5 and 4, respectively, and the maximum autoregressive order 4 is naturally chosen for the quarterly
data. Table 2 indicates that lasso with CV and BIC yields the most complicated model, which
is consistent with the simulation findings. This overfitted model also leads to an unexpected sign
on the variable LGSP. In contrast, both lasso* with CV and lasso* with BIC select the same yet
simpler model with variable LELP, CDD, HDD and four lags. It is noteworthy to point out that
the two important temperature variables (CDD and HDD) are successfully identified by lasso*. In
addition to that the sign of LELP is corrected as compared with the full model regression estimate.
To check the adequacy of the model fitting, the χ2 test statistics for assessing the autocorrelation
of residuals (see Box, Jenkins and Reinsel, 1994, p. 314) are computed (see the last line of Table
2). No statistically significant serial correlation is detected in the residuals. In sum, the lasso*
estimator with either CV or BIC produces the same simple, interpretable, yet adequate model
fitting to the electricity demand data.

6 Discussion

In regression with autoregressive errors (REGAR) models, we propose the lasso approach to jointly
shrink regression and autoregression coefficients. In contrast to the REGAR model, the autore-
gression with exogenous variables (ARX) model (Harvey, 1981, and Shumway and Stoffer, 2000)
provides an alternative approach to explicitly take into account serial dependency via the lagged
variables. Specifically, the ARX model is

yt = x′tβ +
q∑

j=1

φt−jyt−j + εt.

To simultaneously shrink the regression and lagged coefficients, we consider the following lasso
criterion:

n0∑

t=q+1


yt − x′tβ −

q∑

j=1

φjyt−j




2

+ n

p∑

j=1

λ∗j |βj |+ n

q∑

j=1

γ∗j |φj | .

Analogous to the REGAR model, it can be shown that the lasso approach produces a sparse
solution not only for exogenous variables but also for lagged dependent variables. Moreover, the
resulting lasso estimator enjoys the oracle property when the tuning parameters satisfy the proper
conditions. Extensive simulation studies (not presented here) also indicate their satisfactorily finite
sample performance.

Finally, we identify three research areas for further study. The first is extending the applica-
tion of lasso to both the dynamic regression model (Greene, 2003) and the regression model with
seasonal autoregressive errors. The second is to obtain the lasso estimator for the regression model
with autoregressive conditional heteroscedastic (ARCH) errors (Gouriéroux, 1997) and the autore-
gressive and moving average with exogenous variables (ARMAX) model (Shumway and Stoffer,
2000). The third is to investigate autoregressive shrinkage and selection by compressing the partial
autocorrelations sequentially. We believe that these efforts would further enhance the usefulness of
the lasso estimators in real data analysis.
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Appendix

Appendix A: Proof of Theorem 1

Let δ = (u′, v′)′, u = (u1, · · · , up)′, and v = (v1, · · · , vq)′, and then define

κn(δ) = Qn(θ0 + n−1/2δ)−Qn(θ0)

=
{
Ln(θ0 + n−1/2δ)− Ln(θ0)

}
+ nλn

p∑

j=1

{
|β0

j + ujn
−1/2| − |β0

j |
}

+nγn

q∑

j=1

{
|φ0

j + vjn
−1/2| − |φ0

j |
}

.

Adopting Knight and Fu’s (2000) approach, we have

nλn

p∑

j=1

{
|β0

j + ujn
−1/2| − |β0

j |
}
→ λ0

p∑

j=1

{
ujsgn{β0

j }I(β0
j 6= 0) + |uj |I(β0

j = 0)
}

nγn

q∑

j=1

{
|φ0

j + vjn
−1/2| − |φ0

j |
}
→ γ0

q∑

j=1

{
vjsgn{φ0

j}I(φ0
j 6= 0) + |vj |I(φ0

j = 0)
}

.

Furthermore,

Ln(θ0 + n−1/2δ)− Ln(θ0)

=
∑

t





[
yt − x′t(β0 + n−1/2u)

]−
p∑

j=1

(φ0
j + n−1/2vj)

[
yt−j − x′t−j(β0 + n−1/2u)

]




2

−
∑

t

ε2t

=
∑

t



et −

q∑

j=1

(φ0
j + n−1/2vj)et−j − n−1/2u′


xt −

q∑

j=1

(φ0
j + n−1/2vj)xt−j








2

−
∑

t

ε2t

=
∑

t



εt − n−1/2

q∑

j=1

vjet−j − n−1/2u′


xt −

q∑

j=1

φ0
jxt−j


 + n−1u′

q∑

j=1

vjxt−j





2

−
∑

t

ε2t

= R1 + R2 + R3 + R4 + R5,
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where

R1 = −2n−1/2
∑

t


εt

q∑

j=1

vjet−j


− 2n−1/2u′

∑
t


εt


xt −

q∑

j=1

φ0
jxt−j







R2 = 2n−1u′
∑

t








q∑

j=1

vjet−j





xt −

q∑

j=1

φ0
jxt−j








R3 = n−1
∑

t




q∑

j=1

vjet−j




2

+ n−1u′
∑

t


xt −

q∑

j=1

φ0
jxt−j





xt −

q∑

j=1

φ0
jxt−j



′

u

R4 = 2n−1
∑

t


u′

q∑

j=1

vjxt−j






εt − n−1/2

q∑

j=1

vjet−j − n−1/2u′


xt −

q∑

j=1

φ0
jxt−j








R5 = n−2u′
∑

t




q∑

j=1

vjxt−j







q∑

j=1

vjxt−j



′

u.

Employing the martingale central limit theorem and the ergodic theorem, we are able to show that
R1 →d −2δ′w, R2 = op(1), R3 →p δ′Σδ, R4 = op(1), and R5 = op(1). Consequently,

Ln(θ0 + n−1/2δ)− Ln(θ0) →d −2δ′w + δ′Σδ.

In order to show that argmin{κn(δ)} →d argmin{κ(δ)}, we have to prove that argmin{κn(δ)} =
Op(1). Note that

κn(δ) ≥
∑

t






εt − n−1/2

q∑

j=1

vjet−j − n−1/2u′


xt −

q∑

j=1

φ0
jxt−j


 + n−1u′

q∑

j=1

vjxt−j




2

− ε2t





−nλn

p∑

j=1

|ujn
−1/2| − nγn

q∑

j=1

|vjn
−1/2|

≥
∑

t






εt − n−1/2

q∑

j=1

vjet−j − n−1/2u′


xt −

q∑

j=1

φ0
jxt−j







2

− ε2t





−(λ0 + ε0)
p∑

j=1

|uj | − (γ0 + ε0)
q∑

j=1

|vj |+ ξn(δ) .= κ̃n(δ),

where ε0 > 0 is some positive constant. In addition, κn(0) = κ̃n(0) and ξn(δ) = op(1). Moreover,
for all δ and sufficiently large n, the quadratic terms in κ̃n(δ) grow faster than the |uj | and |vj |.
As a result, argmin{κ̃n(δ)} = Op(1) and argmin{κn(δ)} = Op(1). Because argmin{κ(δ)} is unique
with probability 1, the proof is completed.
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Appendix B: Proof of Lemma 1

Let αn = n−1/2 + an and {θ0 + αnδ : ‖δ‖ ≤ d} be the ball around θ0. Then, for ‖δ‖ = d, we have

Dn(δ) .= Q∗
n(θ0 + αnδ)−Q∗

n(θ0)

≥ Ln(θ0 + αnδ)− Ln(θ0) + n
∑

j∈S1

λj

(|β0
j + αnuj | − |β0

j |
)

+ n
∑

j∈S2

γj

(|φ0
j + αnvj | − |φ0

j |
)

≥ Ln(θ0 + αnδ)− Ln(θ0)− nαn

∑

j∈S1

λj |uj | − nαn

∑

j∈S2

γj |vj |

≥ Ln(θ0 + αnδ)− Ln(θ0)− nα2
np0d− nα2

nq0d

= Ln(θ0 + αnδ)− Ln(θ0)− nα2
n(p0 + q0)d. (A.1)

Furthermore,

Ln(θ0 + αnδ)− Ln(θ0)

=
∑

t



εt − αn

q∑

j=1

vjet−j − αnu′


xt −

q∑

j=1

φ0
jxt−j


 + α2

nu′
q∑

j=1

vjxt−j





2

−
∑

t

ε2t

= A1 + A2 + A3 + A4 + A5, (A.2)

where

A1 = α2
n

∑
t








q∑

j=1

vjet−j




2

+ u′


xt −

q∑

j=1

φ0
jxt−j





xt −

q∑

j=1

φ0
jxt−j



′

u





A2 = −2αn

∑
t

εt




q∑

j=1

vjet−j + u′


xt −

q∑

j=1

φ0
jxt−j







A3 = 2α2
n

∑
t




q∑

j=1

vjet−j


u′


xt −

q∑

j=1

φ0
jxt−j




A4 = α3
n

∑
t


u′

q∑

j=1

vjxt−j





αnu′

q∑

j=1

vjxt−j − 2u′


xt −

q∑

j=1

φ0
jxt−j


− 2

q∑

j=1

vjet−j




A5 = 2α2
n

∑
t

εt


u′

q∑

j=1

vjxt−j


 .

Moreover, we have

A1 = nα2
n ×

{
δ′Σδ + op(1)

}

A2 = δ′Op(nα2
n)

A3 = nα2
n × op(1) = op(nα2

n)
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A4 = nα3
n ×Op(1) = nα2

nop(1) = op(nα2
n)

A5 = nα2
n × op(1) = op(nα2

n).

Because A1 dominates the rest of four terms in (A.2) and also nα2
n(p0 + q0)d in (A.1). Hence, for

any given ε > 0, there exists a large constant d such that

P

{
inf
‖δ‖=d

Q∗
n(θ0 + αnδ) > Q∗

n(θ0)
}
≥ 1− ε.

This implies that with probability at least 1−ε, there exists a local minimizer in the ball {θ0+αnδ :
‖δ‖ ≤ d} (Fan and Li, 2001). Consequently, there exists a local minimizer of Q∗

n(θ) such that
‖θ̂∗ − θ0‖ = Op(αn). This completes the proof.

Appendix C: Proof of Theorem 2

It follows from the fact that the local minimizer θ̂∗ must satisfy the following equation,

∂Q∗
n(θ̂∗)

∂βj
=

∂Ln(θ̂∗)
∂βj

− nλjsgn(β̂∗j )

=
∂Ln(θ0)

∂βj
+ nΣj(θ̂∗ − θ0){1 + op(1)} − nλjsgn(β̂∗j ), (A.3)

where Σj denotes the j’th row of Σ and j ∈ Sc
1. Employing the central limit theorem, the first

term in (A.3) is of the order Op(n1/2). Furthermore, the condition in Theorem 2 implies that its
second term is also of the order Op(n1/2). Both of them are dominated by nλj since

√
nbn → ∞.

Therefore, the sign of (A.3) is dominated by the sign of β̂∗j . Consequently, we must have β̂∗j = 0 in
probability. Analogously, we can show that P (φ̂∗Sc

2
= 0) → 1. This completes the proof.

Appendix D: Proof of Theorem 3

Applying Lemma 1 and Theorem 2, we have P (θ̂∗2 = 0) → 1. Hence, the minimizer of Q∗
n(θ) is the

same as that of Q∗
n(θ1) with probability tending to one. This implies that the lasso estimator, θ̂∗1,

satisfies the following equation
∂Q∗

n(θ1)
∂θ1

∣∣∣∣∣
θ1=θ̂∗1

= 0. (A.4)

According to Lemma 1, θ̂∗1 is a
√

n-consistent estimator. Thus, the Taylor’s expansion of (A.4)
yields

0 =
1√
n
× ∂Ln(θ̂∗1)

∂θ1
+
√

nP (θ̂∗1) =
1√
n
× ∂Ln(θ0

1)
∂θ1

+
√

nP (θ0
1)

+Σ0

√
n(θ̂∗1 − θ0

1) + op(1),
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where P is the first order derivative of the penalty function
∑

j∈S1

λj |βj |+
∑

j∈S2

γj |φj | ,

and P (θ̂∗1) = P (θ0
1) as n large enough. Furthermore, it can be easily shown that

√
nP (θ0

1) = op(1),
which implies that

√
n(θ̂∗1 − θ0

1) =
Σ−1

0√
n
× ∂Ln(θ0

1)
∂θ1

+ op(1) d→ N(0, σ2Σ−1
0 ).

This completes the proof.
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Table 1: Simulation Results with ρ = 0.50

Regression Variable Autoregressive Order Correctly Median
Tuning under correctly over under correctly over fitted of

Estimator Method fitted fitted fitted fitted fitted fitted model MSPE

σ = 3.0, n = 50
LASSO CV 0.019 0.174 0.807 0.043 0.142 0.815 0.026 17.430

BIC 0.017 0.223 0.760 0.018 0.206 0.776 0.045 16.715
LASSO* CV 0.078 0.412 0.510 0.063 0.585 0.352 0.245 16.228

BIC 0.101 0.578 0.321 0.074 0.752 0.174 0.455 15.382

σ = 3.0, n = 100
LASSO CV 0.001 0.235 0.764 0.001 0.126 0.873 0.020 14.713

BIC 0.001 0.367 0.632 0.000 0.176 0.824 0.054 14.392
LASSO* CV 0.003 0.572 0.425 0.002 0.654 0.344 0.376 13.826

BIC 0.003 0.852 0.145 0.003 0.932 0.065 0.796 13.504

σ = 3.0, n = 300
LASSO CV 0.000 0.144 0.856 0.000 0.133 0.867 0.011 13.194

BIC 0.000 0.167 0.833 0.000 0.233 0.767 0.035 13.111
LASSO* CV 0.000 0.683 0.317 0.000 0.678 0.322 0.449 12.900

BIC 0.000 0.946 0.054 0.000 0.971 0.029 0.919 12.862

σ = 0.5, n = 50
LASSO CV 0.000 0.174 0.826 0.047 0.138 0.815 0.026 1.530

BIC 0.000 0.228 0.772 0.017 0.207 0.776 0.045 1.461
LASSO* CV 0.000 0.566 0.434 0.056 0.579 0.365 0.340 1.320

BIC 0.000 0.802 0.198 0.071 0.758 0.171 0.636 1.275

σ = 0.5, n = 100
LASSO CV 0.000 0.234 0.766 0.001 0.126 0.873 0.020 1.289

BIC 0.000 0.370 0.630 0.000 0.176 0.824 0.056 1.260
LASSO* CV 0.000 0.623 0.377 0.002 0.650 0.348 0.416 1.189

BIC 0.000 0.941 0.059 0.003 0.930 0.067 0.877 1.165

σ = 0.5, n = 300
LASSO CV 0.000 0.144 0.856 0.000 0.133 0.867 0.011 1.156

BIC 0.000 0.168 0.832 0.000 0.233 0.767 0.035 1.148
LASSO* CV 0.000 0.685 0.315 0.000 0.675 0.325 0.452 1.132

BIC 0.000 0.969 0.031 0.000 0.972 0.028 0.943 1.124
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Table 2: Three Models Selected by lasso and lasso* for
the Electricity Demand Study

LASSO LASSO*
Variable CV BIC CV BIC
LY 0.117796 0.196611 - -
LELP -0.150010 -0.154907 -0.168853 -0.168853
LGSP -0.035808 -0.057948 - -
CDD 0.000237 0.000246 0.000226 0.000226
HDD 0.000216 0.000231 0.000222 0.000222
LAG1 0.608868 0.598635 0.627451 0.627451
LAG2 -0.705199 -0.689985 -0.713343 -0.713343
LAG3 0.590666 0.581069 0.604899 0.604899
LAG4 0.253515 0.271175 0.225005 0.225005
χ2-Test 0.039428 0.005632 0.305896 0.305896
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